Understanding the Key to Unlocking Fast Li-ion Conduction in Fluoride-based Solid Electrolytes

了解氟化物固体电解质中实现快速锂离子传导的关键

基本信息

  • 批准号:
    2329953
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-15 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYAll-solid-state batteries have the potential to increase the energy density of liquid-based cells by 30%. Unfortunately, they currently suffer from chemical degradation at the interfaces and deposition of Li between particles of the oxides frequently used as the electrolyte, which ultimately hinders their long-term reversibility. The goal of this work, supported by the Ceramics Program within the Division of Materials Research, is to develop fluoride-based materials that are more robust against these detrimental side reactions. While fluorides have been explored as solid electrolytes in the past, very few phases with fast ionic conductivity at room temperature have been discovered. This work postulates that the formation energy of defects plays a critical role for enabling fast diffusion and seeks to elucidate ways to control their evolution during synthesis. TECHNICAL SUMMARYThis project will study new fluoride-based garnets and Zr-based compounds to better understand how the structural rigidity of fluorides affects ionic conductivity. Electrochemical impedance spectroscopy and Density Functional Theory (DFT) calculations will be used to gain a deeper understanding of charge transport through the weakly polarizable anionic sublattice of fluorides. Aliovalent chemical substitutions will be performed to examine the impact of increasing the lithium content or creating vacancies in the lattice has on the conductivity. Fundamentally, the proposed research seeks to develop a deeper understanding of how to promote fast ion transport in fluoride-based solid electrolytes through an integrated approach involving synthesis, advanced characterization, and theoretical modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概要全固态电池有潜力将液体电池的能量密度提高 30%。不幸的是,它们目前在界面处发生化学降解,并且在经常用作电解质的氧化物颗粒之间沉积锂,这最终阻碍了它们的长期可逆性。这项工作得到了材料研究部陶瓷项目的支持,其目标是开发更能抵抗这些有害副反应的氟化物材料。虽然过去已经探索氟化物作为固体电解质,但很少发现在室温下具有快速离子电导率的相。这项工作假设缺陷的形成能对于实现快速扩散起着关键作用,并试图阐明在合成过程中控制其演化的方法。技术摘要该项目将研究新型氟化物石榴石和锆基化合物,以更好地了解氟化物的结构刚性如何影响离子电导率。电化学阻抗谱和密度泛函理论(DFT)计算将用于更深入地了解通过氟化物弱极化阴离子亚晶格的电荷传输。将进行异价化学取代,以检查增加锂含量或在晶格中产生空位对电导率的影响。从根本上说,拟议的研究旨在通过涉及合成、高级表征和理论建模的综合方法,更深入地了解如何促进基于氟化物的固体电解质中的快速离子传输。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Melot其他文献

Brent Melot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brent Melot', 18)}}的其他基金

Design and Preparation of Organic-Metal Halide Hybrids Exhibiting Charge Transfer
具有电荷转移功能的有机金属卤化物杂化物的设计和制备
  • 批准号:
    1905826
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the Influence of the Framework on Alkali Ion Diffusion in Polyanionic Intercalcation Electrodes
职业:了解框架对聚阴离子插层电极中碱离子扩散的影响
  • 批准号:
    1554204
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

“三钥匙-三锁”多因子激活型近红外二区比率荧光纳米探针研制及活体生物活性分子成像研究
  • 批准号:
    22364005
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
弟子规管理:探索内求式管理的一把金钥匙
  • 批准号:
    71271046
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
中国同脉缟蝇亚科昆虫的增强性鉴定
  • 批准号:
    31260525
  • 批准年份:
    2012
  • 资助金额:
    48.0 万元
  • 项目类别:
    地区科学基金项目
面向MANET的密钥管理关键技术研究
  • 批准号:
    61173188
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

Unlocking the potential of bacterial polymers by defining key determinants
通过定义关键决定因素释放细菌聚合物的潜力
  • 批准号:
    FT230100400
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    ARC Future Fellowships
Hidden histories in teeth: The key to unlocking secrets in ancient Myanmar
牙齿中隐藏的历史:解开古代缅甸秘密的钥匙
  • 批准号:
    DE210101383
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Unlocking Access to HCV Testing in Jail: Stakeholder Involvement in Research Is the Missing Key
解锁监狱中 HCV 检测的机会:利益相关者参与研究是缺失的关键
  • 批准号:
    9977343
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Unlocking Access to HCV Testing in Jail: Stakeholder Involvement in Research Is the Missing Key
解锁监狱中 HCV 检测的机会:利益相关者参与研究是缺失的关键
  • 批准号:
    10381496
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Unlocking Access to HCV Testing in Jail: Stakeholder Involvement in Research Is the Missing Key
解锁监狱中 HCV 检测的机会:利益相关者参与研究是缺失的关键
  • 批准号:
    10112951
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了