RI:Small: Modeling and Relating Visual Tasks
RI:Small:建模和关联视觉任务
基本信息
- 批准号:2329927
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep networks trained on massive visual datasets are being used in an increasing number of applications in fields such as autonomous driving, robotics, manufacturing, e-commerce, and science and engineering disciplines. However, exploring the vast space of solutions for a new problem can be difficult as it demands significant computational resources. There is a pressing need for tools that improve understanding of the extent to which solutions from one task generalize to new tasks, along with methods for sharing the expertise needed to design these solutions. This project aims to tackle these challenges by developing a framework to model, relate, and visualize recognition tasks across a broad range of visual domains. Doing so will enable practitioners to identify closely related datasets for application across tasks and to select deep network architectures for pre-training. The project will examine practical applications of the framework and examine methods for detecting and adapting to statistical shifts that take place in long-term deployment of machine-learning models. Specifically, the project will look at efficient solutions for problems in Ecology and Civil Engineering domains. The educational impact of the project includes teaching, mentoring graduate and undergraduate students through research activities associated with the project, and mentoring underrepresented undergraduates in computing through the University's Early Research Scholars Program.This project aims to create a general framework for representing a variety of visual recognition tasks and their relationships. Specifically, the research team will develop: 1) A theoretical framework to embed tasks into Euclidean and hyperbolic vector spaces (creating “task embeddings”) by evaluating the importance of the parameters of deep networks employed to solve them; 2) Efficient methods for computing task embeddings for networks containing millions, or even billions, of parameters; 3) Techniques to leverage unlabeled data to enhance task embeddings when label availability is limited; 4) Techniques to compute task embeddings for dense visual prediction tasks such as object detection and image segmentation; 5) The application of task embeddings to address meta-tasks such as dataset selection, multi-tasking, and detecting task shifts; 6) Visualization of symmetric and asymmetric relationships between tasks represented by widely used computer vision datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在海量视觉数据集上训练的深度网络正在越来越多地应用于自动驾驶、机器人、制造、电子商务以及科学和工程学科等领域。探索新问题解决方案的广阔空间可以是困难,因为它需要大量的计算资源,迫切需要能够提高对一项任务的解决方案泛化到新任务的程度的理解,以及共享设计这些解决方案所需的专业知识的方法。通过开发一个框架来建模、关联和解决这些挑战跨广泛的视觉领域可视化识别任务将使实践者能够识别跨任务应用的密切相关的数据集,并选择深度网络架构进行预训练。该项目将检查该框架的实际应用并检查检测方法。具体来说,该项目将研究生态学和土木工程领域问题的有效解决方案,该项目的教育影响包括教学、指导研究生和本科生。学生通过与项目相关的研究活动,以及该项目旨在创建一个表示各种视觉识别任务及其关系的通用框架,具体而言,研究团队将开发:1)通过以下方式将任务嵌入到欧几里得和双曲向量空间中的理论框架(创建“任务嵌入”)。评估用于解决这些问题的深度网络参数的重要性;2)计算包含数百万个网络的任务嵌入的有效方法,甚至数十亿个参数;3)在标签可用性有限时利用未标记数据增强任务嵌入的技术;4)计算密集视觉预测任务(例如对象检测和图像分割)的任务嵌入的技术;用于解决元任务(例如数据集选择、多任务处理和检测任务转移)的嵌入;6)广泛使用的计算机所代表的任务之间的对称和不对称关系的可视化;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhransu Maji其他文献
Discovering a Lexicon of Parts and Attributes
发现零件和属性的词典
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Subhransu Maji - 通讯作者:
Subhransu Maji
DISCount: Counting in Large Image Collections with Detector-Based Importance Sampling
DISCount:使用基于检测器的重要性采样对大型图像集合进行计数
- DOI:
10.48550/arxiv.2306.03151 - 发表时间:
2023-06-05 - 期刊:
- 影响因子:5.5
- 作者:
Gustavo Perez;Subhransu Maji;D. Sheldon - 通讯作者:
D. Sheldon
The Semi-Supervised iNaturalist Challenge at the FGVC8 Workshop
FGVC8 研讨会的半监督 iNaturalist 挑战
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jong;Subhransu Maji - 通讯作者:
Subhransu Maji
Cross Quality Distillation
交叉质量蒸馏
- DOI:
- 发表时间:
2016-04-01 - 期刊:
- 影响因子:0
- 作者:
Jong;Subhransu Maji - 通讯作者:
Subhransu Maji
Fast unsupervised alignment of video and text for indexing/names and faces
快速无监督地对齐视频和文本以进行索引/姓名和面孔
- DOI:
10.1145/1290067.1290077 - 发表时间:
2007-09-28 - 期刊:
- 影响因子:0
- 作者:
Subhransu Maji;R. Bajcsy - 通讯作者:
R. Bajcsy
Subhransu Maji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhransu Maji', 18)}}的其他基金
CAREER:Towards Perceptual Agents That See and Reason Like Humans
职业生涯:迈向像人类一样观察和推理的感知主体
- 批准号:
1749833 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Texture2Text: Rich Language-Based Understanding of Textures for Recognition and Synthesis
RI:小:Texture2Text:基于丰富语言的纹理理解,用于识别和合成
- 批准号:
1617917 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
- 批准号:82371229
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
- 批准号:82301369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
- 批准号:82303616
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
- 批准号:
2007955 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
- 批准号:
2007994 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
- 批准号:
2008011 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Modeling Co-Decisions: A Computational Framework Using Language and Metadata
RI:小型:共同决策建模:使用语言和元数据的计算框架
- 批准号:
2008761 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Extracting Dynamics from Limited Data for Modeling and Control of Unmanned Autonomous Systems
RI:小型:协作研究:从有限数据中提取动力学,用于无人自主系统的建模和控制
- 批准号:
1910087 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant