Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing

合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学

基本信息

  • 批准号:
    2329274
  • 负责人:
  • 金额:
    $ 10.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This project aims to enhance student learning and engagement in large lecture STEM courses by developing, optimizing, and evaluating a digital learning environment called CourseMIRROR. CourseMIRROR uses Natural Language Processing (NLP) algorithms and techniques to prompt and scaffold students to create in-depth reflections on their learning experiences. By closely working with a socially and culturally diverse group of students and instructors in public universities and community colleges, the project will directly affect hundreds of students through evidence-based pedagogies and the way educators provide opportunities for learning and engagement. Since we purposefully selected to work with diverse students across institutions, findings will be generalizable to the college student population. Also, the multidisciplinary nature of the project team and work ensures that our results will be reached across traditional disciplinary silos, generating impact in multiple fields, including NLP, Artificial Intelligence (AI), Human-Computer Interaction (HCI), learning sciences, and STEM education. By examining students’ learning through purposeful reflection and feedback loops, this work has the potential to provide a route to personalized learning with innovative approaches to problems vital in the increasingly global economy, thereby opening an important new direction of research in learning sciences and emerging technologies.The proposed project will explore the role of the reflection-informed learning and instruction (RILI) model on students’ engagement and learning outcomes in large lecture STEM courses. The research team will develop and optimize the CourseMIRROR digital learning system that leverages NLP techniques to prompt and scaffold students to write detailed reflections and generate reflection summaries for each lecture. Specifically, this project will incorporate three lines of research: 1) the role of the RILI model on students’ motivation, emotions, and learning, 2) the effectiveness of NLP in creating personalized learning experiences, summarizing reflections in a meaningful way, and evaluating the quality of reflections, and 3) value and design of digital learning tools to improve students’ engagement and learning. This project leverages NLP and HCI techniques and connects them with the RILI model. The aim of combining these approaches emerges to support the innovative and unconventional approach to research, pedagogical strategies, and improved student outcomes. How students learn through iterative cycles of critical reflection and how to effectively utilize and optimize prompts and feedback is not yet well understood or studied. Equally important is how instructors use the process of reflective practice to inform and transform instruction. This project is novel in this respect, as researchers have yet to conduct studies in which these questions are jointly explored and help us explore how learning and engagement can be enabled, improved, and supported across different classes using digital tools, social interactions, and practices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发、优化名为 CourseMIRROR 的数字学习环境来增强学生对大型讲座 STEM 课程的学习和参与度。 CourseMIRROR 使用自然语言处理 (NLP) 算法和技术来提示和支持学生对 STEM 课程进行深入思考。通过与公立大学和社区学院的社会和文化多元化的学生和教师群体密切合作,该项目将通过基于证据的教学法以及教育工作者提供学习和学习机会的方式直接影响数百名学生。由于我们有目的地选择与跨机构的不同学生合作,因此研究结果将适用于大学生群体。此外,项目团队和工作的多学科性质确保了我们的成果将跨越传统的学科领域,从而产生影响。这项工作涵盖 NLP、人工智能 (AI)、人机交互 (HCI)、学习科学和 STEM 教育等多个领域,通过有目的的反思和反馈循环来检查学生的学习情况,有可能为个性化提供一条途径。学习以创新的方法解决日益全球化的经济中至关重要的问题,从而开辟学习科学和新兴技术的重要新研究方向。拟议的项目将探讨反思型学习和教学(RILI)模型对学生参与的作用研究团队将开发和优化 CourseMIRROR 数字学习系统,利用 NLP 技术提示和支撑学生为每堂课撰写详细的反思并生成反思总结。具体而言,该项目将包含三行内容。研究范围: 1) RILI 模型对学生动机、情感和学习的作用,2) NLP 在创造个性化学习体验、以有意义的方式总结反思以及评估反思质量方面的有效性,以及 3) 价值和设计该项目利用 NLP 和 HCI 技术并将其与 RILI 模型相结合,旨在支持创新和非常规的研究方法。学生如何通过批判性反思的迭代循环进行学习以及如何有效利用和优化提示和反馈同样重要的是教师如何利用反思实践过程来提供信息和进行转变。这个项目在这方面是新颖的,因为研究人员尚未进行共同探讨这些问题的研究,并帮助我们探索如何使用数字工具、社交互动、跨班级实现、改进和支持学习和参与。和实践。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Diane Litman其他文献

Persuasiveness of Generated Free-Text Rationales in Subjective Decisions: A Case Study on Pairwise Argument Ranking
主观决策中生成的自由文本理由的说服力:成对论证排名的案例研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamed S. Elaraby;Diane Litman;Xiang Lorraine Li;Ahmed Magooda
  • 通讯作者:
    Ahmed Magooda
Analyzing Large Language Models for Classroom Discussion Assessment
分析用于课堂讨论评估的大型语言模型
  • DOI:
    10.48550/arxiv.2406.08680
  • 发表时间:
    2024-06-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nhat Tran;Benjamin Pierce;Diane Litman;Richard Correnti;L. Matsumura
  • 通讯作者:
    L. Matsumura
Adding Argumentation into Human Evaluation of Long Document Abstractive Summarization: A Case Study on Legal Opinions
在长文档摘要摘要的人类评价中添加论证:法律意见书案例研究
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamed S. Elaraby;Huihui Xu;Morgan Gray;Kevin Ashley;Diane Litman
  • 通讯作者:
    Diane Litman
Towards Faithful Response Generation for Chinese Table Question Answering
实现中文表格问答的忠实响应生成
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eva Banik;Eric Kow;Nikhil Dinesh;Vinay Chaudhri;Junwei Bao;Duyu Tang;N. Duan;Zhao Yan;Yuan;Ming Zhou;Tiejun Zhao. 2018;Table;Paweł Budzianowski;Tsung;Iñigo Tseng;Stefan Casanueva;Osman Ultes;Ra;Wenhu Chen;Ming;Eva Schlinger;William Yang Wang;W. Cohen;Hanwen Zha;Zhiyu Chen;J. Devlin;Kenton Lee;Rik Koncel;Dhanush Bekal;Yi Luan;Liang Li;Can Ma;Yinliang Yue;Da;Percy Liang;Michael I. Jordan;Dan Klein;Diane Litman;Scott Silliman. 2004;Itspoke;An;Chia;Ryan Lowe;Iulian Serban;Laurent Noseworthy;Charlin Joelle;Pineau;Tianyu Liu;Fuli Luo;Qiaolin Xia;Shuming Ma;Alec Radford;Jeffrey Wu;R. Child;D. Luan;Colin Raffel;Noam M. Shazeer;A. Roberts;K. Lee;Sharan Narang;Michael Matena;Yanqi;Wei Zhou;J. LiPeter;Liu. 2020;Exploring;Leonardo FR. Ribeiro;Yue Zhang;Iryna Gurevych;Alan Ritter;Colin Cherry;W. Dolan;Peter Shaw;Jakob Uszkoreit;Ashish Vaswani;Li Song;Zhiguo Wang;Am;a Stent;a;J. Dowding;J. Gawron
  • 通讯作者:
    J. Gawron
Enhancing Knowledge Retrieval with Topic Modeling for Knowledge-Grounded Dialogue
通过基于知识的对话的主题建模增强知识检索
  • DOI:
    10.48550/arxiv.2405.04713
  • 发表时间:
    2024-05-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nhat Tran;Diane Litman
  • 通讯作者:
    Diane Litman

Diane Litman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Diane Litman', 18)}}的其他基金

Collaborative Research: Development of Natural Language Processing Techniques to Improve Students' Revision of Evidence Use in Argument Writing
合作研究:开发自然语言处理技术以提高学生对论证写作中证据使用的修改
  • 批准号:
    2202347
  • 财政年份:
    2022
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
EXP: Development of Human Language Technologies to Improve Disciplinary Writing and Learning through Self-Regulated Revising
EXP:人类语言技术的发展,通过自我调节的修改来改善学科写作和学习
  • 批准号:
    1735752
  • 财政年份:
    2017
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Entrainment and Task Success in Team Conversations
RI:小型:协作研究:团队对话中的引导和任务成功
  • 批准号:
    1420784
  • 财政年份:
    2014
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Student Research Workshop in Computational Linguistics at the NAACL HLT 2010 Conference
NAACL HLT 2010 会议上计算语言学学生研究研讨会
  • 批准号:
    1022697
  • 财政年份:
    2010
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
RI: Small: An Affect-Adaptive Spoken Dialogue System that Responds Based on User Model and Multiple Affective States
RI:Small:基于用户模型和多种情感状态进行响应的情感自适应口语对话系统
  • 批准号:
    0914615
  • 财政年份:
    2009
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Adapting to Student Uncertainty over and above Correctness in A Spoken Tutoring Dialogue System
在口语辅导对话系统中适应学生的不确定性而不是正确性
  • 批准号:
    0631930
  • 财政年份:
    2006
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: Monitoring Student State in Tutorial Spoken Dialogue
协作研究:在教程口语对话中监控学生状态
  • 批准号:
    0328431
  • 财政年份:
    2003
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了