FuSe: Precise Sequence Specific Block Copolymers for Directed Self-Assembly - Co-Design of Lithographic Materials for Pattern Quality, Scaling, and Manufacturing
FuSe:用于定向自组装的精确序列特定嵌段共聚物 - 用于图案质量、缩放和制造的光刻材料的协同设计
基本信息
- 批准号:2329133
- 负责人:
- 金额:$ 192.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Future of Semiconductors (FuSe) Program, Professors Paul Nealey and Juan de Pablo at the University of Chicago, Professor Christopher Ober at Cornell University, and Professor Whitney Loo at the University of Wisconsin-Madison will design, synthesize and investigate new materials and processes for high-volume high-resolution patterning in the context of semiconductor manufacturing. Lithography or patterning is the enabling technology for semiconductor manufacturing. Recently the light used for the highest resolution lithography has changed from a wavelength of 193 nano meter to a more energetic extreme ultra-violet (EUV) light with a wavelength of 13.5 nano meter. This disruptive advance enabled patterning at smaller dimensions to manufacture ever more powerful and faster semiconductor devices. This project will capitalize on the concept of co-design of materials and processes to enhance the EUV lithographic process through a strategy known as EUV plus directed self-assembly (DSA). Tools that were developed in the biological and medical sciences will be used here to synthesize polypeptoid containing BCPs for high precision and uniformity of augmented material properties for EUV plus DSA applications. Coupled to the advancement of patterning science and US semiconductor manufacturing competitiveness, an internship program will provide hands-on training in cleanroom operations to 2-year community college students in university cleanrooms in order to propel them into careers as high-level semiconductor manufacturing technicians .The project is focused on the design and synthesis of new block copolymer (BCP) materials and their use for high-volume high-resolution EUV-based patterning for semiconductor manufacturing. The research team will capitalize on the concept of co-design of materials and processes to enhance the EUV lithographic process through a strategy known as EUV plus directed self-assembly (DSA). An issue in designing BCPs for EUV plus DSA is the need for a comprehensive materials platform to: 1) understand the fundamental new physics governing high chi low N systems, 2) engineer multiple optimized covarying attributes into different BCP chemistries at each target resolution, and 3) ensure a robust materials supply chain for commercialization. A-block-(B-random-C) architectures will be employed to decouple thermodynamic properties (chi, chiN) from surface and interfacial properties and to allow for optimized or engineered covarying properties such as BCP lamellar period (resolution), block surface energies (perpendicular orientation of through film domains), sharp interfaces between domains (low line edge roughness), and pattern transfer capabilities. The research is focused on the development of BCPs based on polypeptoids. Importantly, polypeptoid-based block copolymers provide opportunities to engineer sequence specificity in the B-r-C block to co-design key EUV plus DSA properties, surface energy, width of interfaces between blocks, and pattern transfer. High chi and low N systems do not obey traditional BCP theory and scaling laws, and new physics of the polypeptoid systems will be discovered and exploited to optimize materials for the lithographic applications. The polypeptoid platform is ideally suited for machine learning approaches to optimize properties and to understand the new physics of these systems. Sequence and composition specific BCPs with zero dispersity made in quantity using solid-phase synthesis will enable unprecedented integration of experiment, theory, and computation, including machine learning to understand and exploit emergent behavior for patterning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在半导体未来(FuSe)计划的支持下,芝加哥大学的 Paul Nealey 和 Juan de Pablo 教授、康奈尔大学的 Christopher Ober 教授以及威斯康星大学麦迪逊分校的 Whitney Loo 教授将设计、合成和研究半导体制造中用于大批量高分辨率图案化的新材料和工艺。 光刻或图案化是半导体制造的支持技术。 最近,用于最高分辨率光刻的光已从波长 193 纳米变为更具能量的极紫外 (EUV) 光,波长为 13.5 纳米。 这一颠覆性的进步使得能够以更小的尺寸进行图案化,以制造更强大、更快的半导体器件。 该项目将利用材料和工艺协同设计的概念,通过一种称为 EUV 加定向自组装 (DSA) 的策略来增强 EUV 光刻工艺。 生物和医学领域开发的工具将用于合成含有 BCP 的多肽,以实现 EUV 加 DSA 应用的增强材料特性的高精度和均匀性。 结合图案科学的进步和美国半导体制造竞争力,实习计划将为大学洁净室中的两年制社区学院学生提供洁净室操作的实践培训,以推动他们成为高级半导体制造技术人员。该项目专注于新型嵌段共聚物 (BCP) 材料的设计和合成,及其在半导体制造中基于 EUV 的大批量高分辨率图案化的应用。 研究团队将利用材料和工艺协同设计的概念,通过一种称为 EUV 加定向自组装 (DSA) 的策略来增强 EUV 光刻工艺。 为 EUV 加 DSA 设计 BCP 的一个问题是需要一个全面的材料平台来:1)了解控制高 chi 低 N 系统的基本新物理,2)在每个目标分辨率下将多个优化的共变属性设计到不同的 BCP 化学中,以及3)确保商业化的强大材料供应链。 A-块-(B-随机-C)架构将用于将热力学性质(chi、chiN)与表面和界面性质解耦,并允许优化或设计共变性质,例如BCP层状周期(分辨率)、块表面能(穿过薄膜域的垂直方向)、域之间的清晰界面(低线边缘粗糙度)和图案转移能力。 该研究重点是基于多肽的 BCP 的开发。重要的是,基于多肽的嵌段共聚物提供了设计 B-r-C 嵌段中的序列特异性的机会,以共同设计关键的 EUV 加 DSA 特性、表面能、嵌段之间的界面宽度和图案转移。 高chi和低N系统不遵守传统的BCP理论和比例定律,并且将发现和利用多肽系统的新物理来优化光刻应用的材料。 多肽平台非常适合机器学习方法来优化属性并了解这些系统的新物理原理。使用固相合成技术批量生产的零分散性的序列和成分特定 BCP 将实现实验、理论和计算的前所未有的整合,包括机器学习以理解和利用紧急行为进行图案化。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Nealey其他文献
Basic Research Needs for Transformative Manufacturing
转型制造的基础研究需求
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Cynthia Jenks;Nyung Lee;Jennifer Lewis;C. Kagan;Paul Nealey;P. Braun;Johnathan E. Holladay;Yanqing Gao;D. Sholl;B. Helms;J. Sutherland;J. Greer;C. Spadaccini;E. Holm;A. Rollett;C. Tway - 通讯作者:
C. Tway
Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films.
二氧化钛解点薄膜中的中尺度限制效应和突发量子干涉。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:17.1
- 作者:
F. Barrows;H. Arava;Chun Zhou;Paul Nealey;T. Segal‐Peretz;Yuzi Liu;S. Bakaul;C. Phatak;A. Petford - 通讯作者:
A. Petford
Supporting Information – Mesoscale Confinement Effects and Emergent Quantum Interference in Titania Antidot Thin Films
支持信息 — 二氧化钛解点薄膜中的中尺度约束效应和突发量子干涉
- DOI:
10.15199/48.2023.01.18 - 发表时间:
2023-01-12 - 期刊:
- 影响因子:0
- 作者:
Frank Barrows;Hanu Arava;Chun Zhou;Paul Nealey;Tamar Segal;Yuzi Liu;Saidur Bakaul;Charudatta Phatak - 通讯作者:
Charudatta Phatak
Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport.
能源-水系统的先进材料:水/固体界面在吸附、反应性和传输中的核心作用。
- DOI:
10.1021/acs.chemrev.1c00069 - 发表时间:
2021-07-02 - 期刊:
- 影响因子:62.1
- 作者:
Edward F. Barry;R. Burns;Wei Chen;Guilhem X. De Hoe;J. M. M. De Oca;J. D. de Pablo;James P Dombrowski;J. Elam;Alanna M Felts;G. Galli;J. Hack;Qiming He;Xiang He;E. Hoenig;Aysenur Iscen;Benjamin Kash;H. Kung;Nicholas H. C. Lewis;Chong Liu;Xinyou Ma;A. Mane;A. Martinson;Karen L. Mulfort;Julia G. Murphy;K. Mølhave;Paul Nealey;Yijun Qiao;Vepa Rozyyev;G. Schatz;S. Sibener;D. Talapin;D. Tiede;M. Tirrell;A. Tokmakoff;G. Voth;Zhongyang Wang;Zifan Ye;M. Yesibolati;N. Zaluzec;S. Darling - 通讯作者:
S. Darling
Effect of Stereochemistry on Directed Self-Assembly of Poly(styrene‑b‑lactide) Films on Chemical Patterns
立体化学对聚苯乙烯-丙交酯薄膜定向自组装的影响对化学图案的影响
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:7.015
- 作者:
Xiao Li;Yadong Liu;Lei Wan;Zhaolei Li;Hyo Seon Suh;Jiaxing Ren;Leonidas Ocola;Wenbing Hu;Shengxiang Ji;Paul Nealey - 通讯作者:
Paul Nealey
Paul Nealey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Nealey', 18)}}的其他基金
SNM: Scaling Directed Self-Assembly of Block Copolymers for Sub 10 nm Manufacturing
SNM:用于亚 10 nm 制造的嵌段共聚物的缩放定向自组装
- 批准号:
1344891 - 财政年份:2013
- 资助金额:
$ 192.5万 - 项目类别:
Standard Grant
NSEC: Templated Synthesis and Assembly at the Nanoscale
NSEC:纳米尺度的模板化合成和组装
- 批准号:
0425880 - 财政年份:2004
- 资助金额:
$ 192.5万 - 项目类别:
Cooperative Agreement
NIRT: Dimension Dependent Material Properties of Nanoscopic Macromolecular Structures
NIRT:纳米大分子结构的尺寸依赖性材料特性
- 批准号:
0210588 - 财政年份:2002
- 资助金额:
$ 192.5万 - 项目类别:
Continuing Grant
CAREER: Molecular Interfacial Engineering for Advanced Applications
职业:高级应用的分子界面工程
- 批准号:
9703207 - 财政年份:1997
- 资助金额:
$ 192.5万 - 项目类别:
Continuing Grant
Small Grants for Exploratory Research: Nanofabrication Techniques Based on Two Levels of Molecular Self-Assembly Self-Assembled Monolayers & Ordering of Block Copolymers
探索性研究小额资助:基于两级分子自组装自组装单层的纳米制造技术
- 批准号:
9708944 - 财政年份:1997
- 资助金额:
$ 192.5万 - 项目类别:
Standard Grant
相似国自然基金
基于矢量磁路法的逆变器供电感应电机铁损精确计算模型研究
- 批准号:52307064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Split-GFP技术的生血内皮精确标记和内皮-造血转换机制研究
- 批准号:32301261
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超氚核介子弱衰变寿命的精确测量研究
- 批准号:12305127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基因组鸟嘌呤氧化损伤的高灵敏定量与精确定位分析方法的研究与应用
- 批准号:22374003
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于电热模型融合的航空发动机燃油泵永磁同步电机全域温度精确观测
- 批准号:52377050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Cellular perturbations to enhance precise therapeutic genome editing to treat FTD/ALS
细胞扰动增强精确治疗基因组编辑以治疗 FTD/ALS
- 批准号:
10607752 - 财政年份:2023
- 资助金额:
$ 192.5万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 192.5万 - 项目类别:
Precise in vivo gene editing of HSPC for the treatment of genetic hematologic diseases
HSPC体内精准基因编辑治疗遗传性血液病
- 批准号:
10548540 - 财政年份:2023
- 资助金额:
$ 192.5万 - 项目类别:
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 192.5万 - 项目类别:
Streamlining temperate phage engineering to facilitate precise in situ manipulation of gut microbiota
简化温带噬菌体工程以促进肠道微生物群的精确原位操作
- 批准号:
10507364 - 财政年份:2022
- 资助金额:
$ 192.5万 - 项目类别: