FuSe: Bio-inspired sensorimotor control for robotic locomotion with neuromorphic architectures using beyond-CMOS materials and devices
FuSe:使用超越 CMOS 材料和设备的神经形态架构的机器人运动仿生感觉运动控制
基本信息
- 批准号:2328815
- 负责人:
- 金额:$ 160.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In biology, a key property of mammals is the ability to move efficiently in complex environments which is enabled through neural networks called Central Pattern Generators (CPG). CPGs produce rhythmic patterns of control signals for the limbs using simple environmental cues. A prime example of CPGs in action is our own ability to navigate around obstacles. While such networks are natural from the perspective of mammals, there is currently no efficient way to engineer them using electronic devices and computers. Engineering these networks can revolutionize our ability to build future generations of robots. Agile robots that can traverse unknown and complex terrains have the potential to enable autonomous navigation for commercial transport, enhance disaster response during floods and earthquakes or to access remote and unsafe areas like malfunctioning nuclear plants or space exploration. The advances in computer engineering hardware including circuits, devices, and materials that form the core of this project will aid the creation of this new technology. The breadth of skillsets that are required to effectively train a new cadre of workforce in neuromorphic engineering for robotics makes curriculum design and integration with existing frameworks incredibly challenging. The proposed NeuRoBots educational consortium among the partnering institutions will address this issue. The main objective of this consortium is to collaborate and implement a comprehensive workforce development plan that incorporates evidence-based best practices to help train a new generation of engineers and researchers, who are equipped to satisfy the growing needs of the semiconductor industry. The goal of this award is to model, design and implement neuromorphic networks with synapses and neurons using emerging devices to achieve efficient and adaptive control in miniature robots. The inspiration comes from biological neural circuitry responsible for agile movement. The technical objectives of this project are designed to address three components: 1) The materials track focuses on physics-inspired models to understand the material and device properties to help engineer the temporal dynamics, 2) the devices track develops new devices and circuits for implementing bio-inspired neurons and synapses, and 3) the systems track will implement agile miniature robots that demonstrate bio-inspired locomotion using CPG networks and reinforcement learning. By incorporating non-linear temporal dynamics at multiple timescales through mixed-feedback control and instantiating CPG networks on scalable energy-efficient hardware built using novel devices, the target is to demonstrate a fully functional quadruped/hexapod robot that can learn to move using principles informed by neuroscience. This work can lead to transformative advances in neuromorphic computing, artificial intelligence (AI), robotics, and industrial automation, while providing deeper insights to the science of neuromodulation and self-supervised learning. Development of general-purpose neuromorphic systems that mimic the complex neuromodulatory temporal dynamics seen in neuroscience experiments offers pathways to build a new class of computing machines that address the grand challenges of the BRAIN Initiative, and advances envisioned in the CHIPS Act, benefiting the nation and society at large.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在生物学中,哺乳动物的一个关键特性是能够在复杂的环境中有效移动,这是通过称为中央模式生成器(CPG)的神经网络实现的。 CPG 使用简单的环境提示为肢体产生有节律的控制信号模式。 CPG 实际应用的一个典型例子是我们自己绕过障碍的能力。虽然从哺乳动物的角度来看,这种网络是自然的,但目前还没有有效的方法使用电子设备和计算机来设计它们。设计这些网络可以彻底改变我们建造下一代机器人的能力。可以穿越未知和复杂地形的敏捷机器人有潜力实现商业运输的自主导航,增强洪水和地震期间的灾难响应,或进入偏远和不安全的地区,例如发生故障的核电站或太空探索。计算机工程硬件(包括构成该项目核心的电路、设备和材料)的进步将有助于这项新技术的创造。有效培训机器人神经拟态工程新员工队伍所需的技能范围广泛,这使得课程设计以及与现有框架的集成极具挑战性。拟议的合作机构之间的 NeuRoBots 教育联盟将解决这个问题。该联盟的主要目标是合作并实施一项全面的劳动力发展计划,该计划包含基于证据的最佳实践,以帮助培训新一代工程师和研究人员,以满足半导体行业不断增长的需求。该奖项的目标是使用新兴设备对具有突触和神经元的神经形态网络进行建模、设计和实现,以实现微型机器人的高效和自适应控制。灵感来自负责敏捷运动的生物神经回路。该项目的技术目标旨在解决三个组成部分:1)材料轨道侧重于物理启发模型,以了解材料和设备属性,以帮助设计时间动态,2)设备轨道开发新的设备和电路以实现仿生神经元和突触,3) 系统轨道将实现敏捷的微型机器人,利用 CPG 网络和强化学习展示仿生运动。通过混合反馈控制在多个时间尺度上结合非线性时间动力学,并在使用新颖设备构建的可扩展节能硬件上实例化 CPG 网络,目标是演示一个功能齐全的四足/六足机器人,它可以学习使用已知原理进行移动通过神经科学。这项工作可以带来神经形态计算、人工智能 (AI)、机器人和工业自动化领域的变革性进步,同时为神经调节和自我监督学习科学提供更深入的见解。开发模仿神经科学实验中复杂的神经调节时间动力学的通用神经形态系统,为构建新型计算机器提供了途径,以解决“大脑计划”的巨大挑战以及“芯片法案”中设想的进步,造福国家和人民。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajkumar Chinnakonda Kubendran其他文献
Robot Locomotion through Tunable Bursting Rhythms using Efficient Bio-mimetic Neural Networks on Loihi and Arduino Platforms
在 Loihi 和 Arduino 平台上使用高效仿生神经网络通过可调突发节奏进行机器人运动
- DOI:
10.1145/3589737.3605965 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:0
- 作者:
V. Vivekanand;Samarth Chopra;S. Hashemkhani;Rajkumar Chinnakonda Kubendran - 通讯作者:
Rajkumar Chinnakonda Kubendran
Rajkumar Chinnakonda Kubendran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajkumar Chinnakonda Kubendran', 18)}}的其他基金
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 160.65万 - 项目类别:
Continuing Grant
相似国自然基金
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
多功能Bio-Ag NCs负载miR-200c靶向治疗耐药乳腺癌的研究
- 批准号:81871474
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:面上项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
- 批准号:
2327384 - 财政年份:2024
- 资助金额:
$ 160.65万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 160.65万 - 项目类别:
Standard Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
- 批准号:
2422277 - 财政年份:2024
- 资助金额:
$ 160.65万 - 项目类别:
Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
$ 160.65万 - 项目类别:
Continuing Grant
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 160.65万 - 项目类别:
Discovery Projects