ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications

ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信

基本信息

项目摘要

Due to the advent of data-intensive applications and rapid growth of communication networks, the energy consumption of wireless ecosystem has been ever-increasing. Currently, the total electricity consumption of all communication networks in the world is estimated to be a few thousand terawatt-hours per year, and this number is projected to be multiplied in the coming decades. Nevertheless, the millimeter-wave (mmW) radio systems newly adopted in wireless communications to increase the bandwidth are much less energy-efficient than the traditional radio systems operating at lower frequency bands. This project aims to fundamentally improve the energy efficiency of mmW systems by exploiting the highly efficient wide-bandgap (WBG) semiconductor technologies through heterogeneous integration (HI) and advanced packaging, which will be further enhanced by artificial intelligence (AI) for real-time efficiency optimization. By reducing the energy consumption, the ubiquitous deployment of high-efficiency WBG-based mmW systems will mitigate the massive carbon emission of wireless networks and eventually contribute to the evolution of wireless industry towards 'Net-Zero' emission. Moreover, this project will promote the capitalization of mmW frequency bands and ease the congestion of the sub-6-GHz spectrum to address the emergent need of spectrum sustainability in our nation. The impact of this program will be further expanded through integrated educational efforts and outreach activities.This project aims to vastly enhance the energy efficiency of mmW array system through advanced heterogeneous integration of high-power WBG power amplifier (PA) circuits in conjunction with AI-assisted dynamic optimization from individual elements to the array system level. First, multi-chip assembly and packaging integration will be developed to seamlessly embed WBG chips with the package substrate and interconnect them with other functional blocks and antennas. The developed HI process will also involve compatible cooling solutions based on a "shower-type" microfabricated nozzle structure to effectively manage the thermal condition of the WBG layer during system operation. Moreover, high-resolution thermal test structures will be co-integrated to provide real-time temperature sensing data for AI training. Second, a novel WBG mmW PA architecture, called hybrid asymmetrical load-modulated balanced amplifier (H-ALMBA), is proposed. This novel architecture offers unparalleled efficiency as well as high linearity. The H-ALMBA is also equipped with a powerful intrinsic varactor-less reconfigurability, enabling self-healing of the PA against severe environmental fluctuations in the highly compact mmW system in package, including antenna scan impedance, temperature, mechanical deformation, and process variation. Third, an AI-assisted controller will be developed to dynamically tune the operation parameters of the PA array, in which the control loop is closed via an over-the-air observation link for acquisition of the main-beam data. In this control scheme, operator-learning and multi-modal data fusion will be investigated to learn the control policy by considering the different impacts of various observation parameters. To achieve low-power and low-latency implementation of the AI engine, a hardware-friendly training framework will be developed to automatically compress and quantize the AI-assisted controller with high accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于数据密集型应用的出现和通信网络的快速增长,无线生态系统的能源消耗不断增加。目前,世界上所有通信网络的总耗电量估计为每年几千太瓦时,并且这个数字预计在未来几十年内将成倍增加。然而,无线通信中新采用的用于增加带宽的毫米波(mmW)无线电系统的能效远低于在较低频段运行的传统无线电系统。该项目旨在通过异构集成(HI)和先进封装,利用高效宽带隙(WBG)半导体技术,从根本上提高毫米波系统的能源效率,并通过人工智能(AI)实时实现进一步增强。效率优化。通过降低能耗,普遍部署基于宽带隙的高效毫米波系统将减轻无线网络的大量碳排放,并最终有助于无线行业向“净零”排放发展。此外,该项目将促进毫米波频段的资本化,缓解6GHz以下频谱的拥塞,以满足我国频谱可持续性的迫切需求。该计划的影响将通过综合教育工作和推广活动进一步扩大。该项目旨在通过高功率WBG功率放大器(PA)电路的先进异构集成与AI相结合,大幅提高毫米波阵列系统的能效。辅助从单个元件到阵列系统级别的动态优化。首先,将开发多芯片组装和封装集成,将WBG芯片无缝嵌入封装基板,并将其与其他功能块和天线互连。开发的HI工艺还将涉及基于“喷淋式”微加工喷嘴结构的兼容冷却解决方案,以有效管理系统运行期间WBG层的热状况。此外,高分辨率热测试结构将被共同集成,为人工智能训练提供实时温度传感数据。其次,提出了一种新型宽带隙毫米波功率放大器架构,称为混合非对称负载调制平衡放大器(H-ALMBA)。这种新颖的架构提供了无与伦比的效率和高线性度。 H-ALMBA 还配备了强大的内在无变容二极管可重构性,使 PA 能够针对高度紧凑的毫米波封装系统中的严重环境波动进行自我修复,包括天线扫描阻抗、温度、机械变形和工艺变化。第三,将开发人工智能辅助控制器来动态调整功率放大器阵列的操作参数,其中通过空中观测链路闭合控制回路以获取主波束数据。在该控制方案中,将研究算子学习和多模态数据融合,以通过考虑各种观测参数的不同影响来学习控制策略。为了实现AI引擎的低功耗和低延迟实施,将开发一个硬件友好的训练框架,以高精度自动压缩和量化AI辅助控制器。该奖项反映了NSF的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenle Chen其他文献

Load Modulated Balanced Amplifier with Reconfigurable Phase Control for Extended Dynamic Range
具有可重新配置相位控制的负载调制平衡放大器,可扩展动态范围
Microwave Gas Breakdown in Tunable Evanescent-Mode Cavity Resonators
可调谐倏逝模腔谐振器中的微波气体击穿
Hybrid Load-Modulated Double-Balanced Amplifier (H-LMDBA) with Four-Way Load Modulation and >15-dB Power Back-off Range
具有四路负载调制和 >15dB 功率回退范围的混合负载调制双平衡放大器 (H-LMDBA)
Highly Linear and Highly Efficient Dual-Carrier Power Amplifier Based on Low-Loss RF Carrier Combiner
基于低损耗射频载波合路器的高线性、高效双载波功率放大器
Antibiased Electrostatic RF MEMS Varactors and Tunable Filters
抗偏静电 RF MEMS 变容二极管和可调谐滤波器

Kenle Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenle Chen', 18)}}的其他基金

CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
  • 批准号:
    2239207
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CCSS: AI-Assisted Reconfigurable Dual-Input Load-Modulation Transmitter Array for Energy- and Spectrum-Efficient Massive MIMO Communications
CCSS:人工智能辅助可重构双输入负载调制发射机阵列,用于节能和频谱高效的大规模 MIMO 通信
  • 批准号:
    2218808
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CCSS: Intrinsically-Linear Loadline-Envelope-Tracking (LET) Radio Transmitter Toward Wideband, Energy-Efficient, and Ultra-Fast Wireless Communications
CCSS:本质线性负载线包络跟踪 (LET) 无线电发射机,实现宽带、节能和超快速无线通信
  • 批准号:
    1914875
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

基于异类信息融合的UAV自主着舰位姿测量方法
  • 批准号:
    62033010
  • 批准年份:
    2020
  • 资助金额:
    272 万元
  • 项目类别:
    重点项目
基于多维数据融合的民航无线电干扰实时监测研究及系统设计
  • 批准号:
    61863035
  • 批准年份:
    2018
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目
红外与可见光图像融合系统的目标探测概率提升研究
  • 批准号:
    61801239
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
面向未知相关性和任意概率分布的网络化多模态异类数据融合方法
  • 批准号:
    61773031
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
面向海事监测的GNSS-R海上物标探测及异类传感器时空信息融合方法
  • 批准号:
    51379121
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
  • 批准号:
    2219672
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
  • 批准号:
    2219760
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Integrated Terahertz Measurement Systems based on Heterogeneously Integrated Sensors
基于异构集成传感器的集成太赫兹测量系统
  • 批准号:
    1609411
  • 财政年份:
    2016
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Highly miniaturised fatigue test platform for thermo-mechanical and reliability characterisation of heterogeneously and bottom-up integrated nanofunctionalised components.
高度小型化的疲劳测试平台,用于异构和自下而上集成纳米功能化组件的热机械和可靠表征。
  • 批准号:
    195216076
  • 财政年份:
    2011
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Units
Reactor operation with integrated adsorption for heterogeneously catalyzed reactions
用于多相催化反应的集成吸附反应器操作
  • 批准号:
    5383138
  • 财政年份:
    2002
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了