Collaborative Research: Enabling Scalable Redox Reactions in Biomanufacturing

合作研究:在生物制造中实现可扩展的氧化还原反应

基本信息

  • 批准号:
    2328145
  • 负责人:
  • 金额:
    $ 94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Biomanufacturing, the biosynthesis of commodity chemicals, fuels, and medicines, represents a fast-growing industry with over $150 billion in revenue in the US. To continue to grow in scale and economic viability, biomanufacturing must increase its carbon and energy efficiency. However, biosynthetic logics that exist in Nature often do not operate at maximal carbon or energy efficiency. This is the case because release of carbon is required as carbon dioxide and energy has to be wasted as heat to afford a robust thermodynamic driving force. One way to overcome this challenge is to introduce unnatural thermodynamic driving forces. This project contributes a suite of unnatural, chemical tools to deploy stronger-than-Nature thermodynamic driving forces in the form of low reduction-potential reducing equivalents. These tools augment the natural capability of biological systems and lead to the conversion of renewable resources into valuable products. Through the integrated research and outreach activities, the project improves biomanufacturing to better meet the Nation's needs for energy, food, commodities, and medicine and concomitantly contributes to undergraduate and graduate education in STEM. The project plans activities to motivate K-12 students to pursue a career in STEM by participating in hands-on experiences in practical science. Current biomanufacturing processes face a fundamental challenge: biosynthetic logics that exist in Nature often do not operate at maximal carbon or energy efficiency, because carbon needs to be released as carbon dioxide and energy needs to be wasted as heat to afford a robust thermodynamic driving force. To overcome this challenge, unnatural thermodynamic driving forces are introduced. This proposal develops unnatural cofactors to deploy stronger-than-Nature thermodynamic driving forces. The overall objectives are to introduce unnatural redox cofactors that are more potent reducing reagents than NAD(P) into Escherichia coli metabolism and use them to power carbon-efficient biomanufacturing of commodity chemicals. This is achieved by engineering key enzymes to utilize these unnatural cofactors through an integrated Design-Build-Test-Learn workflow spanning genome mining, high-throughput enzyme discovery with directed evolution, structural and biophysical study of the engineered enzymes, as well as machine learning-based data interpretation to distill general design principles that govern protein-cofactor interactions. A better overall understanding of how structural plasticity of the cofactors is tolerated by enzymes, advances capability beyond what Nature selected for during evolution and opens new design space for proteins.This award is co-funded by the Systems and Synthetic Biology program in the Division of Molecular and Cellular Biosciences and the Cellular and Biochemical Engineering program in the Division of Chemical, Bioengineering, Environmental and Transport SystemsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物制造,即商品化学品、燃料和药品的生物合成,是一个快速增长的行业,在美国的收入超过 1500 亿美元。为了继续扩大规模和经济可行性,生物制造必须提高其碳效率和能源效率。然而,自然界中存在的生物合成逻辑通常不能以最大碳或能源效率运行。之所以如此,是因为需要以二氧化碳的形式释放碳,并且必须以热量的形式浪费能量才能提供强大的热力学驱动力。克服这一挑战的一种方法是引入非自然的热力学驱动力。该项目提供了一套非自然的化学工具,以低还原电位还原当量的形式部署比自然更强的热力学驱动力。这些工具增强了生物系统的自然能力,并将可再生资源转化为有价值的产品。通过综合研究和推广活动,该项目改进了生物制造,以更好地满足国家对能源、食品、商品和医药的需求,同时为 STEM 本科和研究生教育做出贡献。该项目计划开展活动,激励 K-12 学生通过参与实用科学的实践经验来从事 STEM 职业。当前的生物制造过程面临着一个根本性的挑战:自然界中存在的生物合成逻辑通常不能在最大碳或能量效率下运行,因为碳需要以二氧化碳的形式释放,能量需要以热量的形式浪费,以提供强大的热力学驱动力。为了克服这一挑战,引入了非自然热力学驱动力。该提案开发了非自然辅助因子来部署比自然更强的热力学驱动力。总体目标是将非天然氧化还原辅助因子(比 NAD(P) 更有效的还原剂)引入大肠杆菌代谢中,并利用它们为商品化学品的碳高效生物制造提供动力。这是通过设计关键酶来利用这些非天然辅因子来实现的,通过集成的设计-构建-测试-学习工作流程,涵盖基因组挖掘、高通量酶发现与定向进化、工程酶的结构和生物物理研究以及机器学习基于数据解释,提炼出控制蛋白质-辅因子相互作用的一般设计原则。更好地全面了解酶如何耐受辅因子的结构可塑性,提高了超出自然在进化过程中选择的能力,并为蛋白质开辟了新的设计空间。该奖项由系统与合成生物学项目共同资助化学、生物工程、环境和运输系统部门的分子和细胞生物科学以及细胞和生物化学工程项目该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Han Li其他文献

The strategies and safeguard measures of expanding the space of Blue Granary
蓝色粮仓拓展空间的策略与保障措施
POSTMORTEM CALPAIN AND DESMIN CHANGES IN EXCISED LANYU PIG LONGISSIMUS MUSCLE
兰玉猪离体长肌死后钙蛋白酶和结蛋白的变化
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ya;Han Li;R. Chou
  • 通讯作者:
    R. Chou
Postmortem calpain changes in longissimus muscle from Lanyu native and Kaohsiung crossbred black pigs.
兰屿本地黑猪与高雄杂交黑猪死后最长肌中钙蛋白酶的变化。
Categorical Relation-Preserving Contrastive Knowledge Distillation for Medical Image Classification
用于医学图像分类的保留分类关系的对比知识蒸馏
  • DOI:
    10.1007/978-3-030-87240-3_16
  • 发表时间:
    2021-07-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaohan Xing;Yuenan Hou;Han Li;Yixuan Yuan;Hongsheng Li;M. Meng
  • 通讯作者:
    M. Meng
Electrical/optical dual-energy-driven MXene fabric-based heater with fast response actuating and human strain sensing
电/光双能驱动 MXene 织物加热器,具有快速响应驱动和人体应变感应功能

Han Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Han Li', 18)}}的其他基金

A Dynamical Systems Weekend Conference at Wesleyan
卫斯理学院动力系统周末会议
  • 批准号:
    2000176
  • 财政年份:
    2020
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
CAREER: Engineering redox metabolism using unnatural cofactors
职业:使用非天然辅助因子工程氧化还原代谢
  • 批准号:
    1847705
  • 财政年份:
    2019
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Group Actions, Homogeneous Dynamics, and Number Theory
群作用、齐次动力学和数论
  • 批准号:
    1700109
  • 财政年份:
    2017
  • 资助金额:
    $ 94万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了