EAGER: Tunable Gas Separation Membrane Fabrication via Paramagnetically-induced Arrangement of 2D Nanomaterials

EAGER:通过顺磁诱导的二维纳米材料排列制造可调气体分离膜

基本信息

  • 批准号:
    2327908
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Gas separation processes play a crucial role in chemical and fuel manufacturing and in reducing atmospheric emissions. Nanomaterial-based membranes hold immense potential to achieve more efficient and sustainable gas separations. These membranes, composed of atomically thin (2-dimensional or 2D) layers, allow the desired gas molecules to pass through with minimal resistance and high selectivity while blocking the passage of others. The arrangement of interparticle spacing and nanochannel pathways within the membrane layers determines the movement of molecules across it. Unfortunately, controlling these interlayer structures using existing large-scale membrane fabrication methods is difficult, hindering the effective commercialization of the most promising 2D nanomaterial-based membranes. This research project addresses the challenge of controlling molecular separations and nanoscale interlayer structures by developing an innovative approach to membrane fabrication that utilizes variable magnetic fields to manipulate the formation of nanochannels. The anticipated outcomes of this project include a functional 2D nanomaterial-based membrane with superior molecular transport properties and a novel technique for membrane fabrication, opening up new avenues for novel mixed-matrix-membrane filler materials. In addition to its technical contributions, this project will support the growth and development of two Ph.D. students and two undergraduate researchers. By engaging in this project, these students will acquire valuable technical and professional skills, positioning themselves for future careers in STEM fields. Furthermore, the project will actively involve the community through service and experiential learning activities and collaborations with K-12 schools. This engagement aims to foster societal well-being by creating knowledge-sharing opportunities and inspiring the next generation of scientists and engineers.This project addresses the need for a scalable two-dimensional (2D) lamellar membrane fabrication method to control nanochannel formation reliably, imparting superior selectivity and gas transport properties. The investigator anticipates that applying a controlled magnetic field to a paramagnetic 2D nanomaterials assembly during lamellar membrane fabrication will result in membranes with tunable selective nanochannels, where the applied field strength modulates the nanochannel formation mechanism. To determine the feasibility of this membrane fabrication concept, room temperature paramagnetization will be introduced into 2D nanomaterials through ion intercalation. A uniform magnetic field will be applied to achieve homogenous nanoparticle deposition, and the ability to control nanochannel size via the applied field strength will be evaluated. The agglomeration tendency will be assessed while using a magnetic field-induced assembly at high nanoparticle loading. Finally, the effect of void formation by in-situ nanoparticle migration during mixed-matrix membrane fabrication will be considered.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气体分离过程在化学品和燃料制造以及减少大气排放方面发挥着至关重要的作用。基于纳米材料的膜在实现更高效和可持续的气体分离方面具有巨大的潜力。这些膜由原子薄层(二维或 2D)组成,允许所需气体分子以最小阻力和高选择性通过,同时阻止其他气体分子通过。膜层内颗粒间距和纳米通道路径的排列决定了分子在膜层上的运动。不幸的是,使用现有的大规模膜制造方法来控制这些层间结构很困难,阻碍了最有前途的基于二维纳米材料的膜的有效商业化。该研究项目通过开发一种创新的膜制造方法来解决控制分子分离和纳米级夹层结构的挑战,该方法利用可变磁场来操纵纳米通道的形成。该项目的预期成果包括具有优异分子传输特性的功能性二维纳米材料膜和新颖的膜制造技术,为新型混合基质膜填充材料开辟了新途径。除了技术贡献外,该项目还将支持两名博士的成长和发展。学生和两名本科生研究人员。通过参与这个项目,这些学生将获得宝贵的技术和专业技能,为自己未来在 STEM 领域的职业生涯做好准备。此外,该项目将通过服务和体验式学习活动以及与 K-12 学校的合作,积极吸引社区参与。这项合作旨在通过创造知识共享机会并激励下一代科学家和工程师来促进社会福祉。该项目解决了对可扩展的二维 (2D) 层状膜制造方法的需求,以可靠地控制纳米通道的形成,从而赋予卓越的选择性和气体传输特性。研究人员预计,在层状膜制造过程中对顺磁二维纳米材料组件施加受控磁场将产生具有可调谐选择性纳米通道的膜,其中施加的场强调节纳米通道形成机制。为了确定这种膜制造概念的可行性,将通过离子嵌入将室温顺磁化引入到二维纳米材料中。将施加均匀的磁场以实现均匀的纳米颗粒沉积,并且将评估通过施加的场强度控制纳米通道尺寸的能力。在高纳米颗粒负载下使用磁场诱导组装时,将评估团聚趋势。最后,将考虑混合基质膜制造过程中纳米颗粒原位迁移造成的空隙形成的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Alshami其他文献

Ali Alshami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于气体多通腔多模非线性效应的大能量可调谐光源的研究
  • 批准号:
    12374318
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于高灵敏度光谱技术的微生物生长测量方法研究
  • 批准号:
    61775197
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
金属镀层毛细管增强受激拉曼散射增益光谱气体分析
  • 批准号:
    61675082
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于中红外激光吸收谱理论的燃烧气体免标定原位在线协同测量研究
  • 批准号:
    51606111
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
空芯光波导的吸附效应对光谱法气体浓度测量的影响
  • 批准号:
    61505142
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Tunable HDX and Ion-Molecule Interactions Using Doped-Gas Ion Mobility-Mass Spectrometry
合作研究:使用掺杂气体离子淌度质谱法进行可调谐 HDX 和离子分子相互作用
  • 批准号:
    2003042
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Acquisition of a tunable diode laser system (TILDAS) Aerodyne Mini-TILDAS CO2 Isotope Monitor for triple isotope analyses of CO2 gas from carbonates
采购可调谐二极管激光系统 (TILDAS) Aerodyne Mini-TILDAS CO2 同位素监测仪,用于对碳酸盐中的 CO2 气体进行三重同位素分析
  • 批准号:
    2025107
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: Tunable HDX and Ion-Molecule Interactions Using Doped-Gas Ion Mobility-Mass Spectrometry
合作研究:使用掺杂气体离子淌度质谱法进行可调谐 HDX 和离子分子相互作用
  • 批准号:
    2002852
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Development and application of highly tunable porous biopolymer and smart polymer scaffolds using pressurized gas expanded liquids
使用加压气体膨胀液体的高度可调多孔生物聚合物和智能聚合物支架的开发和应用
  • 批准号:
    479042-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Strategic Projects - Group
Electrically Tunable Graphene Gas Sensors
电可调石墨烯气体传感器
  • 批准号:
    1711227
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了