RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems

RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模

基本信息

  • 批准号:
    2327409
  • 负责人:
  • 金额:
    $ 27.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Recent reports of lithium-ion (Li-ion) battery overheating and catching fire in electric vehicles (EVs) have raised concerns about user safety and the broader acceptance of EVs. These incidents highlight the limitations of the onboard electronic system that monitors and controls the battery pack, referred to as the battery management system (BMS), in detecting such abnormal behavior. Therefore, enhancing the BMS's capabilities to discern the battery's behavior becomes imperative to prevent catastrophic failures. A smart BMS capable of monitoring the smallest part of a battery pack in real-time and learning abnormal behavior for future prediction could be the key to addressing these safety concerns. Through this NSF EPSCoR RII Track-4 fellowship project, the PI will collaborate with experts at the Sandia National Laboratory (SNL) to develop a transformative solution for capturing and learning the dynamic behavior of Li-ion battery packs in EVs. This innovative approach promises to enhance the BMS's predictive capabilities and drive health-centric decisions. Additionally, this initiative includes a comprehensive educational and outreach segment, aimed at promoting the participation of underrepresented students in research, integrating research findings into both graduate and undergraduate education, and facilitating K-12 outreach on Li-ion battery operation and safety through online video tutorials.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows project will provide a fellowship to an Assistant Professor and training for a graduate student at the University of Alabama Huntsville. This work would be conducted in collaboration with researchers at the Sandia National Laboratory (SNL). The primary goals of the fellowship project are to develop: 1) an interconnected model of a Li-ion battery pack and 2) a deep neural network model to learn the spatial and temporal dynamics. The project's intrinsic scientific merit revolves around comprehending the interplay between the electrical, thermal, and aging behavior of the Li-ion battery pack and how these intricately linked behaviors influence internal degradation propagation among cells, both spatially and temporally. Leveraging these insights, the project will, in Aim 1, conceive an interconnected electro-thermal-aging model for the battery pack. A data-centric identification strategy will also be delineated to estimate the parameters of the interconnected model, drawing on graph theory and network inference. In Aim 2, a deep diffusion convolutional neural network (DD-CRNN) will be designed to learn the spatiotemporal dynamics of the pack. This physics-driven DD-CRNN model will be trained using a blend of experimental and synthetic data. Relying on SNL's expansive pack-level testing infrastructure, the project will accumulate degradation and abuse data, which is essential for training the DD-CRNN and affirming the model's validity. The proposed model and learning framework are poised to transform battery health monitoring by delivering precise State of Charge (SOC), State of Health (SOH), and thermal parameter estimations. This innovation will empower BMS with greater autonomy in decision-making by facilitating cell- and module-level health and anomaly detection. The project will chart a new frontier in power and energy management and critically minimize the risk of pack overheating and fire incidents, ensuring safer and more efficient battery utilization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近有关电动汽车 (EV) 锂离子 (Li-ion) 电池过热和起火的报道引发了人们对用户安全和电动汽车更广泛接受度的担忧。这些事件凸显了监视和控制电池组的车载电子系统(称为电池管理系统(BMS))在检测此类异常行为方面的局限性。因此,增强 BMS 识别电池行为的能力对于防止灾难性故障势在必行。能够实时监控电池组最小部分并学习异常行为以进行未来预测的智能 BMS 可能是解决这些安全问题的关键。通过 NSF EPSCoR RII Track-4 奖学金项目,PI 将与桑迪亚国家实验室 (SNL) 的专家合作开发一种变革性解决方案,用于捕获和学习电动汽车中锂离子电池组的动态行为。这种创新方法有望增强 BMS 的预测能力并推动以健康为中心的决策。此外,该计划还包括全面的教育和外展部分,旨在促进代表性不足的学生参与研究,将研究成果纳入研究生和本科生教育,并通过在线视频促进 K-12 关于锂离子电池操作和安全的外展该研究基础设施改进 Track-4 EPSCoR 研究人员项目将为阿拉巴马大学亨茨维尔分校的助理教授提供奖学金并为研究生提供培训。这项工作将与桑迪亚国家实验室(SNL)的研究人员合作进行。该奖学金项目的主要目标是开发:1)锂离子电池组的互连模型,2)用于学习空间和时间动态的深度神经网络模型。该项目的内在科学价值在于理解锂离子电池组的电、热和老化行为之间的相互作用,以及这些错综复杂的行为如何影响电池之间空间和时间上的内部退化传播。利用这些见解,该项目将在目标 1 中为电池组构想一个互连的电热老化模型。还将描述以数据为中心的识别策略,以利用图论和网络推理来估计互连模型的参数。在目标 2 中,将设计深度扩散卷积神经网络 (DD-CRNN) 来学习包的时空动态。这种物理驱动的 DD-CRNN 模型将使用实验数据和合成数据的混合进行训练。依靠 SNL 广泛的包级测试基础设施,该项目将积累退化和滥用数据,这对于训练 DD-CRNN 和确认模型的有效性至关重要。所提出的模型和学习框架旨在通过提供精确的充电状态(SOC)、健康状态(SOH)和热参数估计来改变电池健康监测。这项创新将通过促进单元和模块级别的健康和异常检测,赋予 BMS 更大的决策自主权。该项目将开辟电力和能源管理的新领域,并最大限度地降低电池组过热和火灾事故的风险,确保更安全、更高效的电池利用。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Avimanyu Sahoo其他文献

On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm
多目标进化算法中Pareto前沿和维数相似度的估计
  • DOI:
    10.1016/j.ins.2021.03.008
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Li Li;Gary G. Yen;Avimanyu Sahoo;Liang Chang;Tianlong Gu
  • 通讯作者:
    Tianlong Gu
On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm
多目标进化算法中Pareto前沿和维数相似度的估计
  • DOI:
    10.1016/j.ins.2021.03.008
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Li Li;Gary G Yen;Avimanyu Sahoo;Liang Chang;Tianlong Gu
  • 通讯作者:
    Tianlong Gu
Unsupervised Representation Learning to Aid Semi-Supervised Meta Learning
无监督表示学习辅助半监督元学习
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atik Faysal;Mohammad Rostami;Huaxia Wang;Avimanyu Sahoo;Ryan Antle
  • 通讯作者:
    Ryan Antle
Meta-Tasks: An alternative view on Meta-Learning Regularization
元任务:元学习正则化的另一种观点
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Rostami;Atik Faysal;Huaxia Wang;Avimanyu Sahoo;Ryan Antle
  • 通讯作者:
    Ryan Antle

Avimanyu Sahoo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Avimanyu Sahoo', 18)}}的其他基金

Collaborative Research: REU site: Multi-disciplinary Research Experiences in Smart Personal Protective Equipment (SmaPP)
合作研究:REU 网站:智能个人防护装备 (SmaPP) 的多学科研究经验
  • 批准号:
    2244294
  • 财政年份:
    2023
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant

相似国自然基金

面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
  • 批准号:
    42304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单像素探测的高速运动目标追踪与成像技术研究
  • 批准号:
    62305144
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
  • 批准号:
    2327384
  • 财政年份:
    2024
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
  • 批准号:
    2327474
  • 财政年份:
    2024
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Assessing the Impact of Jovian Planets on the Existence of Potentially Habitable Planets
RII Track-4:NSF:评估木星行星对潜在宜居行星存在的影响
  • 批准号:
    2327072
  • 财政年份:
    2024
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了