EAGER: Collaborative Proposal: Probabilistic Scenarios for Megathrust Earthquakes and Tsunami Genesis
EAGER:协作提案:巨型逆冲地震和海啸成因的概率情景
基本信息
- 批准号:2326785
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Subduction zones, known for parallel chains of towering volcanoes and deep oceanic trenches, host Earth's most geologically complex and heavily populated regions. Subduction zones represent the continuous convergence of two tectonic plates, one of which subducts (“dives”) into the mantle while the other rides over the top of the subducting plate. Stress in this converging system continuously builds until it exceeds the frictional strength of the boundary separating the two plates. At this point, the pent-up stress is released in the form of an earthquake and warps the seafloor. This warping seafloor shifts the overlying ocean surface, a process known as tsunami genesis. Only subduction zones can generate mega-earthquakes, which can warp the seafloor over tremendously vast areas and trigger devastating tsunamis. Predicting tsunamis is a challenging problem because it requires an understanding of the inaccessible details of the stress release along the plate boundary and how it deforms the structure of the entire subduction zone. This research presents a new approach that brings the combined power of mathematics and statistics to bear on this problem. Mathematics describes the physical processes of earthquakes and tsunamis and the statistics account for what is known, or more importantly, what is unknown about the subduction zone system. Results of this research could provide the tools to evaluate risks for coastal locations that are prone to tsunamis. Numerical modeling is the key to this approach and demand for numerical modeling skills is increasing in parallel with expanding data collection initiatives and advances in computational capabilities. This project includes an educational component that will engage students from underrepresented groups in science, technology, engineering, and mathematics in formalized training in numerical modeling. This research will develop numerical tools with a probabilistic perspective to investigate the coupling of seafloor deformation from megathrust earthquakes and tsunamis. These tools will address the challenging problem of embedding sophisticated finite element models of earthquake deformation into automated Monte Carlo sampling strategies. The deformation models will have geodetically-informed slip distributions over curved fault surfaces embedded in domains having the geometric irregularities of topography and bathymetry. Domains will simultaneously account for seismic tomography and reflection models, submarine-based seafloor observations, and tsunami observations. These models will propagate uncertainties from geodetic data into probability density functions for tsunami run-up behavior along coastal locations. This research will, for the first time, quantify how the larger uncertainties for near-trench slip propagate into tsunami predictions. Finite element models are necessary to simulate the complex mechanical behavior of subduction zones and Monte Carlo sampling will reveal how uncertainties in the data and model configurations propagate into deformation and tsunami predictions. These objectives will be achieved using the well-documented 2004 Sumatra megathrust earthquake and tsunami as a case study. A short course on finite element models of earthquake deformation will be developed and delivered. The curriculum will comprise Protocol-based Modeling, Forward Modeling, Inverse Modeling, and discussions of Target Applications. Graduate students from U.S. institutions will be recruited by the Graduate Women In Science chapter and the Women in Science and Engineering program at the South Dakota School of Mines to promote participation of underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。俯冲带以平行的高耸火山链和深海海沟而闻名,是地球上地质最复杂、人口最稠密的地区。俯冲带代表两个构造板块的连续汇聚,其中一个板块俯冲(“潜入”)到地幔中,而另一个板块则越过俯冲板块的顶部。这个会聚系统中的应力不断增加,直到超过分隔两个板块的边界的摩擦强度。此时,被压抑的应力以地震的形式释放出来,使海底扭曲。地表,这个过程被称为海啸发生,只有俯冲带才能产生特大地震,它可以使大片区域的海底扭曲并引发毁灭性的海啸。这是一个具有挑战性的问题,因为它需要了解沿着板块边界的应力释放的难以接近的细节,以及它如何使整个俯冲带的结构变形。这项研究提出了一种新方法,将数学和统计学的综合力量应用于这个问题。数学描述了地震和海啸的物理过程,以及对俯冲带系统已知的或更重要的未知的统计解释,这项研究的结果可以为评估易发沿海地区的风险提供工具。到数值建模是这种方法的关键,随着数据收集计划的扩大和计算能力的进步,对数值建模技能的需求也在不断增加。该项目包括一个教育部分,将吸引来自科学、技术、工程领域代表性不足的群体的学生。以及数值建模形式化训练中的数学。这项研究将开发具有概率视角的数值工具,以研究巨型逆冲地震和海啸造成的海底变形的耦合。这些工具将解决嵌入复杂的复杂问题。将地震变形的有限元模型转化为自动蒙特卡罗采样策略。变形模型将在嵌入具有地形和测深几何不规则性的域中的弯曲断层表面上具有大地测量信息的滑移分布,域将同时考虑地震层析成像和反射模型。这些模型将把大地测量数据的不确定性传播到沿海地区海啸爆发行为的概率密度函数中。将首次量化近海沟滑移的较大不确定性如何传播到海啸预测中,有限元模型对于模拟俯冲带的复杂力学行为是必要的,而蒙特卡罗采样将揭示数据和模型配置中的不确定性。传播到变形和海啸预测中。这些目标将通过使用有据可查的 2004 年苏门答腊岛巨型逆冲地震和海啸作为案例研究来实现。将开发和交付地震变形的元素模型。该课程将包括基于协议的建模、正向建模、逆向建模以及来自美国机构的研究生女性科学家分会和女性研究生的讨论。南达科他州矿业学院科学与工程项目旨在促进代表性不足的学生的参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sui Tung其他文献
Multiterminal source coding (Ph.D. Thesis abstr.)
多终端源代码(博士论文摘要)
- DOI:
10.1109/tit.1978.1055976 - 发表时间:
1978-11-01 - 期刊:
- 影响因子:0
- 作者:
Sui Tung - 通讯作者:
Sui Tung
Sui Tung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sui Tung', 18)}}的其他基金
EAGER: Collaborative Proposal: Probabilistic Scenarios for Megathrust Earthquakes and Tsunami Genesis
EAGER:协作提案:巨型逆冲地震和海啸成因的概率情景
- 批准号:
2136772 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
重构扰动下考虑协作能力影响的智能集群运输系统任务可靠性优化决策
- 批准号:52272430
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理人机群体交互的可协作性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Collaborative Proposal: Probabilistic Scenarios for Megathrust Earthquakes and Tsunami Genesis
EAGER:协作提案:巨型逆冲地震和海啸成因的概率情景
- 批准号:
2136772 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
EAGER: Collaborative Proposal: Probabilistic Scenarios for Megathrust Earthquakes and Tsunami Genesis
EAGER:协作提案:巨型逆冲地震和海啸成因的概率情景
- 批准号:
2136809 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
EAGER Collaborative Proposal: Building a Community of Mentors in Engineering Education Research Through Peer Review Training
EAGER 协作提案:通过同行评审培训建立工程教育研究导师社区
- 批准号:
2318586 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
EAGER Collaborative Proposal: Developing Engineering Faculty as Engineering Education Researchers Through Mentorship
EAGER 合作提案:通过指导将工程教师发展为工程教育研究人员
- 批准号:
2318849 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
EAGER: Collaborative Proposal: Linking physiology and morphology in Grassland evolution via a novel analytical technique
EAGER:协作提案:通过新颖的分析技术将草原进化中的生理学和形态学联系起来
- 批准号:
2114240 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant