QuSeC-TAQS: Quantum Sensor Networks for Metrology, Chemistry and Astrophysics
QuSeC-TAQS:用于计量、化学和天体物理学的量子传感器网络
基本信息
- 批准号:2326787
- 负责人:
- 金额:$ 175万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The emergence of new quantum sensors allows for unprecedented levels of sensitivity and exploration of the physical world across various scales. Quantum sensors harness the advantages of quantum coherence and entanglement. By leveraging non-local correlations distributed among multiple particles, networks of quantum sensors can enhance sensitivity and reveal the spatial structure of target signals at both microscopic and macroscopic scales. This project aims to develop a protocol to showcase the capabilities of quantum sensor networks. It involves understanding fundamental properties, conducting proof-of-principle experiments, and adapting approaches to different platforms and scales for diverse scientific applications. The project will focus on theoretical concepts to describe and enhance spatially distributed quantum sensing, utilizing cutting-edge quantum networking technology on multiple platforms: diamond defect-based nanoscale magnetic-resonance imaging to sense on the molecular scale; entangled networks of atomic clocks to sense gravitational effects; and quantum enhanced THz antenna networks to sense on astronomical scales. To achieve high-resolution magnetic resonance imaging, small clusters of paramagnetic spins associated with NV centers will be utilized for entanglement-enhanced magnetometry and optimal control. This approach enables nano-scale resolution imaging of magnetic fields in materials and biological systems. This project involves developing an entangled network of clocks, combining entanglement-based time-reversal quantum metrology with atom transport while maintaining entanglement. These capabilities will be utilized for sensing gravity gradients, searching for dark matter, and exploring physics beyond the standard model. Additionally, a quantum enhanced THz antenna will utilize collective response of Rydberg atom arrays to electric fields across a broad frequency range (10GHz - few THz). By optically connecting THz receivers and conducting a feasibility study, this team aims to establish global-scale quantum receiver arrays, potentially enabling the detection of faint stellar objects beyond current technology. The experimental work will be complemented by novel theoretical methods that incorporate recent advancements in quantum information and machine learning, including measurement-prepared quantum many-body states, optimal control, and machine learning-optimized controls. This interdisciplinary project combines state-of-the-art technologies in quantum information, atomic-molecular-optical physics, and machine learning, with wide-ranging impact across disciplines such as astrophysics, particle physics, biology, and chemistry. This project was co-funded by the Quantum Sensors Challenge for Transformative Advances in Quantum Systems (QuSeC-TAQS) program, the Special Projects program in the Division of Astronomical Sciences, the Electronic and Photonic Materials program in the Division of Materials Research, and with co-funding from the Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型量子传感器的出现使得对不同尺度的物理世界的灵敏度和探索达到了前所未有的水平。量子传感器利用了量子相干性和纠缠的优点。通过利用分布在多个粒子之间的非局部相关性,量子传感器网络可以增强灵敏度并揭示微观和宏观尺度上目标信号的空间结构。该项目旨在开发一种协议来展示量子传感器网络的功能。它涉及了解基本属性、进行原理验证实验以及针对不同科学应用的不同平台和规模调整方法。该项目将侧重于描述和增强空间分布式量子传感的理论概念,利用多个平台上的尖端量子网络技术:基于金刚石缺陷的纳米级磁共振成像,以在分子尺度上进行传感;纠缠的原子钟网络来感知引力效应;以及量子增强太赫兹天线网络,可在天文尺度上进行感知。为了实现高分辨率磁共振成像,与NV中心相关的顺磁自旋小簇将被用于纠缠增强磁力测量和最优控制。这种方法能够对材料和生物系统中的磁场进行纳米级分辨率成像。该项目涉及开发纠缠时钟网络,将基于纠缠的时间反转量子计量与原子传输相结合,同时保持纠缠。这些功能将用于感测重力梯度、寻找暗物质以及探索标准模型之外的物理学。此外,量子增强太赫兹天线将利用里德伯原子阵列对宽频率范围(10GHz - 几个太赫兹)电场的集体响应。通过光学连接太赫兹接收器并进行可行性研究,该团队的目标是建立全球规模的量子接收器阵列,有可能超越当前技术检测微弱恒星物体。实验工作将得到新颖的理论方法的补充,这些方法结合了量子信息和机器学习的最新进展,包括测量准备的量子多体态、最优控制和机器学习优化控制。这个跨学科项目结合了量子信息、原子分子光学物理和机器学习领域的最先进技术,对天体物理学、粒子物理学、生物学和化学等学科产生了广泛影响。 该项目由量子传感器挑战量子系统变革性进展 (QuSeC-TAQS) 计划、天文科学部特别项目计划、材料研究部电子和光子材料计划以及由国际科学与工程办公室共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Yelin其他文献
Susanne Yelin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanne Yelin', 18)}}的其他基金
NSF BSF: Nonlinear Photon Interactions in Cooperative Quantum Optical Systems
NSF BSF:协作量子光学系统中的非线性光子相互作用
- 批准号:
2207972 - 财政年份:2022
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
Cooperative and Subradiant Phenomena in Quantum Optical Systems
量子光学系统中的协同和次辐射现象
- 批准号:
1912607 - 财政年份:2019
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
Physics and Applications of Cooperative Effects in Nonlinear and Quantum Optics
非线性和量子光学中协同效应的物理及其应用
- 批准号:
1607637 - 财政年份:2016
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Cooperative and Nonlinear Quantum Optics in Dipolar Systems
偶极系统中的协同和非线性量子光学
- 批准号:
1308798 - 财政年份:2013
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Interactive Effects in Polar Molecules and Other Dipolar Media
极性分子和其他偶极介质中的相互作用效应
- 批准号:
0970055 - 财政年份:2010
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Molecular arrays for dipole-based quantum information processing
用于基于偶极子的量子信息处理的分子阵列
- 批准号:
0803619 - 财政年份:2008
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Light propagation effects in strongly interacting gases
强相互作用气体中的光传播效应
- 批准号:
0653417 - 财政年份:2007
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Dipolar switching for robust quantum computation with polar molecules
偶极切换用于极性分子的鲁棒量子计算
- 批准号:
0555553 - 财政年份:2006
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
Collective effects in optically dense atomic clouds
光密原子云中的集体效应
- 批准号:
0354965 - 财政年份:2004
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
- 批准号:
2326784 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entangled Quantum-Enhanced Interferometric Imaging for Telescopy and Metrology
QuSeC-TAQS:用于望远镜和计量的分布式纠缠量子增强干涉成像
- 批准号:
2326803 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant