RII Track-4:@NASA: Investigation of Two-Phase Aerosol Formation, Transport, and Deposition in Aerosol Jet Printing for Submicron Manufacturing of Printed Electronic Devices

RII Track-4:@NASA:用于印刷电子设备亚微米制造的气溶胶喷射印刷中两相气溶胶形成、传输和沉积的研究

基本信息

项目摘要

This project will provide a fellowship to an Assistant professor, and a graduate student at the Marshall University Research Corporation (Marshall) to conduct research in collaboration with researchers at the NASA Marshall Space Flight Center in Alabama. Through the fellowship, the PI aims to identify the key phenomena behind the aerodynamics of aerosols jet printing that affect material deposition and thus the resolution of device fabrication. The U.S. semiconductor industry is a major economic driver, making up 10% of the nation's manufacturing sector and contributing over $250 billion a year in value to the U.S. economy. Semiconductor devices support a wide range of applications, such as fifth-generation (5G) communications, artificial intelligence, high-performance computing, security, and local/remote sensing. Commercial markets, such as the Internet-of-Things, have significantly increased the need for semiconductor-based products. Also, the rapid adoption of new, more powerful technologies is driving demand for additional semiconductor production capacity in the U.S. Additionally, there is a burgeoning need for "high-resolution" device fabrication to fulfill today's performance characteristics, such as low power consumption, fast switching speeds, and increased computing power. Aerosol jet printing (AJP) has emerged as a high-resolution, direct-write manufacturing method for fabrication of a broad spectrum of electronics, such as sensors, optoelectronic devices, and fine-pitch electronics. However, despite recent advances in the AJP technology and formulation of novel functional mate-rials, "submicron" fabrication of electronic devices has encountered serious challenges due largely to the intrinsic limitations and complexity behind the underlying physics of AJP process. There is, therefore, a critical need to identify the link between the governing physical phenomena and the resolution of AJP toward submicron device fabrication beyond today's limits.The longterm goal of this project is to contribute toward submicron direct-write fabrication of printed electronic devices. In pursuit of this goal, the overall objective of the project is to identify the key phenomena behind the aerodynamics of AJP that affect the resolution of material deposition and ultimately device fabrication. The proposed research plan is based on advanced computational fluid dynamics (CFD) models, followed by experimental characterization of the resolution of aerosol deposition carried out at NASA's Marshall Space Flight Center. The computational models include not only the 3D geometry of various AJP deposition heads with different aerosol handling mechanisms, but also the processes of turbulent aerosol atomization, transport, and deposition. The contribution of this research project will be significant because it is expected: (i) to identify the key aerodynamic phenomena influencing feature size and therefore the resolution of material deposition in AJP, and (ii) to pave the way for submicron direct-write fabrication of semiconductor electronic devices (not feasible today). This project will significantly enhance the device fabrication capability of the U.S., will strengthen the U.S. semiconductor industry, and consequently will contribute to the enhancement of national prosperity, security, and U.S. leadership in manufacturing. In addition, NASA will be able to design, manufacture, and test novel AJP deposition heads on the basis of the established computational models as well as experimental observations of the AJP aerodynamics. Furthermore, this project will reduce the scientific barriers that limit direct-write additive manufacturing and will catalyze new manufacturing capabilities that have not been materialized today.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为马歇尔大学研究公司(马歇尔)的一名助理教授和一名研究生提供奖学金,与阿拉巴马州美国宇航局马歇尔太空飞行中心的研究人员合作进行研究。 通过该奖学金,PI 旨在确定气溶胶喷射打印空气动力学背后的关键现象,这些现象影响材料沉积,从而影响设备制造的分辨率。半导体行业是美国经济的主要推动力,占美国制造业的 10%,每年为美国经济贡献超过 2500 亿美元的价值。半导体器件支持广泛的应用,例如第五代 (5G) 通信、人工智能、高性能计算、安全和本地/远程传感。物联网等商业市场显着增加了对半导体产品的需求。此外,更强大的新技术的快速采用正在推动美国对额外半导体产能的需求。此外,对“高分辨率”器件制造的需求日益增长,以满足当今的性能特征,例如低功耗、快速开关速度和计算能力的提高。气溶胶喷射印刷 (AJP) 已成为一种高分辨率、直写制造方法,用于制造各种电子产品,例如传感器、光电器件和细间距电子产品。然而,尽管 AJP 技术和新型功能材料的配方最近取得了进展,但电子器件的“亚微米”制造仍然遇到了严峻的挑战,这主要是由于 AJP 工艺基础物理背后的内在限制和复杂性。因此,迫切需要确定主导物理现象与 AJP 解决方案之间的联系,以实现超越当今限制的亚微米器件制造。该项目的长期目标是为印刷电子器件的亚微米直写制造做出贡献。为了实现这一目标,该项目的总体目标是确定 AJP 空气动力学背后的关键现象,这些现象影响材料沉积的分辨率和最终的器件制造。拟议的研究计划基于先进的计算流体动力学(CFD)模型,随后在美国宇航局马歇尔太空飞行中心进行了气溶胶沉积分辨率的实验表征。计算模型不仅包括具有不同气溶胶处理机制的各种 AJP 沉积头的 3D 几何形状,还包括湍流气溶胶雾化、传输和沉积的过程。该研究项目的贡献将是巨大的,因为预计:(i)确定影响特征尺寸的关键空气动力学现象,从而影响 AJP 中材料沉积的分辨率,以及(ii)为亚微米直写制造铺平道路半导体电子设备(今天不可行)。该项目将显着提高美国的器件制造能力,增强美国半导体产业,从而有助于增强国家繁荣、安全和美国在制造业的领导地位。此外,NASA 将能够根据已建立的计算模型以及 AJP 空气动力学的实验观察来设计、制造和测试新型 AJP 沉积头。此外,该项目将减少限制直写增材制造的科学障碍,并将促进目前尚未实现的新制造能力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roozbeh "Ross" Salary其他文献

Roozbeh "Ross" Salary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
  • 批准号:
    42304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单像素探测的高速运动目标追踪与成像技术研究
  • 批准号:
    62305144
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4: @NASA: Investigation of Erosive Wear Resistance of Ceramic Parts Produced by Additive Manufacturing
RII Track-4:@NASA:增材制造生产的陶瓷零件的耐冲蚀磨损性能研究
  • 批准号:
    2327252
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4: @NASA: Next Generation Hyperspectral Approaches to Detect Harmful Algal Blooms
RII Track-4:@NASA:检测有害藻华的下一代高光谱方法
  • 批准号:
    2327287
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
  • 批准号:
    2327374
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了