RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
基本信息
- 批准号:2327327
- 负责人:
- 金额:$ 29.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to advance the state-of-the-art in energy storage systems by promoting the understanding of emerging solid-state battery (SSB) to realize improved safety and performance via dynamic modeling, control, and experiments. Current Lithium-ion battery (LIB) has exhibited serious safety vulnerabilities and propensity to failure during overcharging, thermal excursions, and mechanical abuses. Meanwhile, electrification of power-critical sectors such as aviation, long-haul trucks, and electric vehicles also promote a quest for pushing the battery performance envelope towards even higher energy density. The SSB can produce significant improvements in energy and power capability thanks to the replacement of the liquid electrolyte used in LIB by a solid-state counterpart. The success of this project constitutes crucial steps forward to unleash the full potentials of SSB to achieve enhanced thermal stability, increased energy density, and faster charging capability. The development of reliable SSB can substantially enhance the energy and power capability of electrochemical energy storage systems while reducing costs, thus enables a faster dissemination of electrified transportation and accelerates the transition towards an environmentally sustainable economy in the United States.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows project would provide a fellowship to an Assistant Professor and training for a graduate student at Oak Ridge National Laboratory. The project envisions a transformative scheme that fuses the benefits of battery material properties and dynamic control, highlighted by three scientific contributions. First, a holistic multiphysics model that enables investigations of functional connections across different length and time scales in SSB systems. Besides providing design guidance, multiphysics models offer rich information for optimal control that safely steers the system trajectory while still delivering on key performance metrics. Second, these multiphysical models, however, are governed by partial differential equations (PDEs) in which nonlinearity, parametric uncertainty, and safety constraints present formidable control-theoretic challenges. This research will advance nonlinear control theory of uncertain and nonlinear parabolic PDE systems to reveal the full electrochemical potentials of SSB and will serve as a tool with which one can perform safety-constraint-aware control. Third, a comprehensive experimental validation will be conducted, including hardware-in-the-loop experiments and post-mortem material characterization. The objective is to uncover the extent to which the multiphysics model-based control improves the safety and performance of energy-dense SSB. The key to this endeavor is a close collaboration with ORNL who provides advanced computational technologies for high-dimensional multiphysics modeling and the state-of-the-art battery material characterization facilities to discover SSB degradation patterns using a broad range of electron microscopies. Multiple new techniques will be cultivated within this project - each can manifest self-sufficient research directions with tremendous impact on future energy storage innovations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过促进对新兴固态电池(SSB)的理解来推进储能系统的最先进技术,从而通过动态建模、控制和实验来提高安全性和性能。当前的锂离子电池 (LIB) 表现出严重的安全漏洞,并且在过度充电、热偏移和机械滥用时容易发生故障。与此同时,航空、长途卡车和电动汽车等电力关键行业的电气化也推动了将电池性能范围推向更高能量密度的追求。由于用固态电解质替代了锂离子电池中使用的液体电解质,SSB 可以显着提高能量和功率能力。该项目的成功是释放 SSB 全部潜力的关键一步,以实现增强的热稳定性、增加的能量密度和更快的充电能力。开发可靠的SSB可以大幅增强电化学储能系统的能源和电力能力,同时降低成本,从而使电气化交通更快普及,并加速美国向环境可持续经济的转型。本研究基础设施改进轨道- 4 EPSCoR 研究人员项目将为橡树岭国家实验室的助理教授提供奖学金并为研究生提供培训。该项目设想了一种变革性的方案,融合了电池材料特性和动态控制的优点,并通过三项科学贡献予以强调。首先,整体多物理场模型能够研究 SSB 系统中不同长度和时间尺度的功能连接。除了提供设计指导之外,多物理场模型还提供丰富的信息以实现最佳控制,从而安全地引导系统轨迹,同时仍然提供关键性能指标。其次,这些多物理模型受偏微分方程 (PDE) 控制,其中非线性、参数不确定性和安全约束提出了巨大的控制理论挑战。这项研究将推进不确定和非线性抛物线 PDE 系统的非线性控制理论,以揭示 SSB 的全部电化学潜力,并将作为一种工具来执行安全约束感知控制。第三,将进行全面的实验验证,包括硬件在环实验和事后材料表征。目的是揭示基于多物理场模型的控制在多大程度上提高了能量密集型单边带的安全性和性能。这项工作的关键是与 ORNL 的密切合作,ORNL 提供用于高维多物理场建模的先进计算技术和最先进的电池材料表征设施,以使用广泛的电子显微镜发现 SSB 退化模式。该项目将培育多种新技术 - 每一种都可以体现自给自足的研究方向,对未来的储能创新产生巨大影响。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力价值和更广泛的影响进行评估,认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Zhang其他文献
P4CTM: Compressed Traffic Pattern Matching Based on Programmable Data Plane
P4CTM:基于可编程数据平面的压缩流量模式匹配
- DOI:
10.1109/iscc58397.2023.10218028 - 发表时间:
2023-07-09 - 期刊:
- 影响因子:0
- 作者:
Hang Lint;W. Lint;J. Lint;Longlong Zhu;Dong Zhang;Chunming Wu - 通讯作者:
Chunming Wu
Sp1 is an important transcriptional regulation factor for forkhead box N1 in pig
Sp1是猪叉头盒N1的重要转录调控因子
- DOI:
10.1007/s12041-018-0883-2 - 发表时间:
2018-02-08 - 期刊:
- 影响因子:1.5
- 作者:
Dong Zhang;Liang Wang;Z. Li;B. Fu;Guo;Di Liu - 通讯作者:
Di Liu
Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation
通过自然水蒸发利用水伏能源生长电自养微生物
- DOI:
10.1038/s41467-024-49429-0 - 发表时间:
2024-06-11 - 期刊:
- 影响因子:16.6
- 作者:
G. Ren;J. Ye;Qichang Hu;Dong Zhang;Yong Yuan;Shungui Zhou - 通讯作者:
Shungui Zhou
Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology
基于核磁共振技术的低渗透油藏水驱机理实验研究
- DOI:
10.1016/j.energy.2023.127960 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:9
- 作者:
J. Wei;Dong Zhang;Xin Zhang;Xiaoqing Zhao;Runnan Zhou - 通讯作者:
Runnan Zhou
Comparative Study of Dip-Angle Domain Gaussian Beam Migration and Kirchhoff Migration in Diffraction Separation
衍射分离中倾角域高斯光束偏移与基尔霍夫偏移的比较研究
- DOI:
10.1190/segam2014-1449.1 - 发表时间:
2014-08-05 - 期刊:
- 影响因子:0
- 作者:
Sam Z. Sun;Yubao Liu;Xuekai Sun;Dong Zhang;Chenjian Li - 通讯作者:
Chenjian Li
Dong Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Zhang', 18)}}的其他基金
Mathematical Sciences: Geometric Variational Problems: Scalar Curvature and Harmonic Maps
数学科学:几何变分问题:标量曲率和调和图
- 批准号:
9305914 - 财政年份:1993
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
相似国自然基金
基础学科拔尖学生发展及其影响机制的追踪研究
- 批准号:72304231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
- 批准号:62307006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多精度目标追踪的多模态统一模型
- 批准号:62302328
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
- 批准号:32371103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
稀疏优化问题中的匹配追踪类和阈值类算法研究
- 批准号:12301393
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
- 批准号:
2327384 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems
RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模
- 批准号:
2327409 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
- 批准号:
2327474 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant