Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
基本信息
- 批准号:2326494
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The digital revolution has generated a vast volume of interconnected data, often represented as graphs, which is pertinent to numerous critical real-world applications. This has led to the increasing prevalence of Graph Neural Networks (GNNs), a technique that extends the benefits of Artificial Intelligence (AI) to graph-based applications. GNNs hold promising potential to significantly impact society, from accelerating drug discovery and preventing supply chain disruptions, to averting cascading power grid failures and identifying misinformation on social media. However, the actualization of such potential is currently impeded by computational inefficiencies caused by the colossal size and intricate nature (such as extreme sparsity and irregularity) of graphs, which pose challenges to the practical deployment of GNNs. This project aims to bridge the gap between the computational efficiency required for GNNs and their current performance, primarily due to the uniquely heavy load of communication required in GNN computation. In addition, the project enriches the educational experience of undergraduate and graduate students in the US by enhancing the quality of AI and system-related courses and outreach activities at the University of Rochester and Indiana University. Successful completion of this research project can unlock the immense potential of GNNs to solve problems in fields of medicine, public infrastructure, and economic development, among many other issues critical to the well-functioning of the republic and the prosperity of its economy. This project aims to develop a revolutionary communication reduction method that organically integrates on-the-fly versatile graph locality enhancement and high-ratio compression through software-hardware co-design. The research is structured around three primary thrusts: (1) The development of an on-the-fly graph locality enhancer via hardware-software co-design, providing significant versatility and additional reductions in communication demands compared to current leading methods. (2) The creation of an efficient lossy compressor that enables high-ratio, error-bounded compression and decompression for graph data, including both graph embedding and topology information. (3) The investigation into methods for effectively combining the graph locality enhancer and graph compressor, allowing them to mutually benefit each other. These strategies together directly address the persistent communication bottlenecks in GNNs and unleash their potential for societal benefits. Moreover, this project aims to resolve the following query: whether a collaborative integration of locality enhancement and data compression, the two most prevalent communication optimization approaches, can provide a ground-breaking solution to general graph problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数字革命产生了大量相互关联的数据,通常以图表的形式表示,与众多关键的现实应用程序相关。这导致图神经网络 (GNN) 的日益普及,这种技术将人工智能 (AI) 的优势扩展到基于图的应用程序。 GNN 具有对社会产生重大影响的巨大潜力,从加速药物发现和防止供应链中断,到避免级联电网故障和识别社交媒体上的错误信息。然而,目前这种潜力的实现受到图的巨大尺寸和复杂性(例如极端稀疏性和不规则性)导致的计算效率低下的阻碍,这对 GNN 的实际部署提出了挑战。该项目旨在弥合 GNN 所需的计算效率与其当前性能之间的差距,这主要是由于 GNN 计算所需的独特的重通信负载。此外,该项目通过提高罗切斯特大学和印第安纳大学的人工智能和系统相关课程以及外展活动的质量,丰富了美国本科生和研究生的教育经验。该研究项目的成功完成可以释放 GNN 的巨大潜力,解决医学、公共基础设施和经济发展领域的问题,以及对共和国良好运作和经济繁荣至关重要的许多其他问题。该项目旨在开发一种革命性的通信减少方法,通过软硬件协同设计将动态通用图局部性增强和高比率压缩有机地集成在一起。该研究围绕三个主要目标进行:(1)通过硬件-软件协同设计开发动态图局部性增强器,与当前领先方法相比,提供显着的多功能性并进一步减少通信需求。 (2) 创建高效的有损压缩器,能够对图数据(包括图嵌入和拓扑信息)进行高比率、误差有限的压缩和解压缩。 (3)研究有效结合图局部性增强器和图压缩器的方法,使它们互惠互利。这些策略共同直接解决 GNN 中持续存在的通信瓶颈,并释放其社会效益的潜力。此外,该项目旨在解决以下问题:局部性增强和数据压缩这两种最流行的通信优化方法的协作集成是否可以为一般图问题提供突破性的解决方案。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tong Geng其他文献
A configurable SIMD architecture with explicit datapath for intelligent learning
具有用于智能学习的显式数据路径的可配置 SIMD 架构
- DOI:
10.1109/samos.2016.7818343 - 发表时间:
2016-07-17 - 期刊:
- 影响因子:0
- 作者:
Yifan He;Maurice Peemen;Luc Waeijen;Erkan Diken;Mattia Fiumara;G. Rauwerda;H. Corporaal;Tong Geng - 通讯作者:
Tong Geng
Prototypical Transformer as Unified Motion Learners
作为统一运动学习器的原型 Transformer
- DOI:
10.1109/cac59555.2023.10450407 - 发表时间:
2024-06-03 - 期刊:
- 影响因子:0
- 作者:
Cheng Han;Yawen Lu;Guohao Sun;James C. Liang;Zhiwen Cao;Qifan Wang;Qiang Guan;S. Dianat;Raghuveer M. Rao;Tong Geng;Zhiqiang Tao;Dongfang Liu - 通讯作者:
Dongfang Liu
Accelerating AP3M-Based Computational Astrophysics Simulations with Reconfigurable Clusters
利用可重构集群加速基于 AP3M 的计算天体物理模拟
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Tianqi Wang;Tong Geng;Xi Jin;M. Herbordt - 通讯作者:
M. Herbordt
Workload Imbalance in HPC Applications: Effect on Performance of In-Network Processing
HPC 应用程序中的工作负载不平衡:对网络内处理性能的影响
- DOI:
10.1109/hpec49654.2021.9622847 - 发表时间:
2021-09-20 - 期刊:
- 影响因子:0
- 作者:
Pouya Haghi;Anqi Guo;Tong Geng;A. Skjellum;Martin C. Herbordt - 通讯作者:
Martin C. Herbordt
APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores
APNN-TC:在 Ampere GPU 张量核心上加速任意精度神经网络
- DOI:
10.1145/3458817.3476157 - 发表时间:
2021-06-23 - 期刊:
- 影响因子:0
- 作者:
Boyuan Feng;Yuke Wang;Tong Geng;Ang Li;Yufei Ding - 通讯作者:
Yufei Ding
Tong Geng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
- 批准号:62265011
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant