CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
基本信息
- 批准号:2325863
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Humans have the ability to continuously learn, accumulate and fine-tune knowledge and skills from a sequence of tasks over their lifetimes. Such lifelong learning is also crucial for computational systems to achieve high levels of performance, flexibility, and adaptation when they interact with real world environments and process streaming sensory data. This project will develop biologically inspired lifelong learning architectures and methods that integrate functions and characteristics of a mammalian brain, which is arguably the best learning system the world has seen. The success of this research will advance fundamental knowledge in computational lifelong learning and will have the potential to transform how the field creates human-like artificial intelligence with lifelong learning capabilities. In addition, the outcome of this research will be integrated into a new curriculum, and opportunities will be provided to students from under-represented groups to participate in computational intelligence research.The project will explore a new machine learning paradigm to address many critical challenges facing current deep neural networks when learning is performed from sequential tasks and different sources. The proposed research will introduce a lifelong learning framework consisting of a feature learning network, a convertible short-term and long-term memory network, and a memory replay network. To achieve effective lifelong learning, this project will address the following three research challenges: (1) learning to memorize -- achieving the optimal balance between plasticity and stability of neural connections to improve the efficiency of both learning and memory networks; (2) learning to recall -- optimizing cue effectiveness in both learning and memory replay networks to address the problem of catastrophic forgetting; and (3) learning to associate -- enabling multimodality association at the memory level. Since the proposed models mimic the hierarchical architecture, short- and long-term memory mechanisms, and feedback function of the mammalian brain, they have the potential to contribute to an artificial general intelligence that better accumulates knowledge without interference, learns multimodality association, and even predicts the future.This project is jointly funded by Robust Intelligence and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类有能力在一生中从一系列任务中不断学习、积累和调整知识和技能。这种终身学习对于计算系统在与现实世界环境交互和处理流式传感数据时实现高水平的性能、灵活性和适应性也至关重要。该项目将开发受生物学启发的终身学习架构和方法,整合哺乳动物大脑的功能和特征,这可以说是世界上见过的最好的学习系统。这项研究的成功将推进计算终身学习的基础知识,并将有可能改变该领域创建具有终身学习能力的类人人工智能的方式。此外,这项研究成果将被整合到新课程中,并为代表性不足群体的学生提供参与计算智能研究的机会。该项目将探索一种新的机器学习范式,以解决面临的许多关键挑战当前的深度神经网络是从顺序任务和不同来源执行学习的。拟议的研究将引入一个终身学习框架,该框架由特征学习网络、可转换的短期和长期记忆网络以及记忆重放网络组成。为了实现有效的终身学习,该项目将解决以下三个研究挑战:(1)学习记忆——实现神经连接的可塑性和稳定性之间的最佳平衡,以提高学习和记忆网络的效率; (2) 学习回忆——优化学习和记忆重放网络中的线索有效性,以解决灾难性遗忘问题; (3) 学习联想——在记忆层面实现多模态联想。由于所提出的模型模仿了哺乳动物大脑的层次结构、短期和长期记忆机制以及反馈功能,因此它们有可能有助于通用人工智能,更好地在不受干扰的情况下积累知识,学习多模态关联,甚至预测未来。该项目由 Robust Intelligence 和刺激竞争研究既定计划 (EPSCoR) 联合资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的评估进行评估,认为值得支持。影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FedLGA: Toward System-Heterogeneity of Federated Learning via Local Gradient Approximation
FedLGA:通过局部梯度近似实现联邦学习的系统异构性
- DOI:10.1109/tcyb.2023.3247365
- 发表时间:2021-12-22
- 期刊:
- 影响因子:11.8
- 作者:Xingyu Li;Zhe Qu;Bo Tang;Zhuo Lu
- 通讯作者:Zhuo Lu
On the Convergence of Multi-Server Federated Learning with Overlapping Area
具有重叠区域的多服务器联邦学习的收敛性研究
- DOI:10.1109/tmc.2022.3200016
- 发表时间:2022-08
- 期刊:
- 影响因子:7.9
- 作者:Qu, Zhe;Li, Xingyu;Xu, Jie;Tang, Bo;Lu, Zhuo;Liu, Yao
- 通讯作者:Liu, Yao
Generalized Federated Learning via Sharpness Aware Minimization
通过锐度感知最小化的广义联合学习
- DOI:10.48550/arxiv.2206.02618
- 发表时间:2022-06-06
- 期刊:
- 影响因子:0
- 作者:Zhe Qu;Xingyu Li;Rui Duan;Yaojiang Liu;Bo Tang;Zhuo Lu
- 通讯作者:Zhuo Lu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Tang其他文献
Power supply recovery model of active distribution network after disaster based on user outage loss evaluation
基于用户停电损失评估的主动配电网灾后供电恢复模型
- DOI:
10.1109/icips59254.2023.10404540 - 发表时间:
2023-10-20 - 期刊:
- 影响因子:0
- 作者:
Bo Tang;Chuang Yu;Liu Feng;Rui Liu;Guan Wang - 通讯作者:
Guan Wang
Downregulation of XIST ameliorates acute kidney injury by sponging miR‐142‐5p and targeting PDCD4
XIST 下调通过海绵 miR-142-5p 和靶向 PDCD4 改善急性肾损伤
- DOI:
10.1002/jcp.29729 - 发表时间:
2020-04-29 - 期刊:
- 影响因子:5.6
- 作者:
Bo Tang;Weiliang Li;Tingting Ji;Xiaoying Li;Xiaolei Qu;Linhong Feng;Yingchun Zhu;Yinghui Qi;Chun Zhu;Shoujun Bai - 通讯作者:
Shoujun Bai
DUCE: Distributed Usage Control Enforcement for Private Data Sharing in Internet of Things
DUCE:物联网中私有数据共享的分布式使用控制执行
- DOI:
10.1007/978-3-030-81242-3_16 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Na Shi;Bo Tang;R. S;hu;hu;Qi Li - 通讯作者:
Qi Li
Reaction between a NO2 Dimer and Dissolved SO2: A New Mechanism for ONSO3- Formation and its Fate in Aerosol.
NO2 二聚体与溶解的 SO2 之间的反应:ONSO3- 形成及其在气溶胶中的命运的新机制。
- DOI:
10.1021/acs.jpca.1c06215 - 发表时间:
2021-09-20 - 期刊:
- 影响因子:0
- 作者:
Bo Tang;Zhenyu Li - 通讯作者:
Zhenyu Li
Robotic- vs laparoscopic-assisted proctectomy for locally advanced rectal cancer based on propensity score matching: Short-term outcomes at a colorectal center in China
基于倾向评分匹配的机器人与腹腔镜辅助直肠切除术治疗局部晚期直肠癌:中国结直肠中心的短期结果
- DOI:
10.4251/wjgo.v12.i4.424 - 发表时间:
2020-04-15 - 期刊:
- 影响因子:3
- 作者:
S. Ye;Wei;Dongning Liu;X. Lei;Q. Jiang;Hua Hu;Bo Tang;Peng;G. Gao;He;Jun Shi;Tai - 通讯作者:
Tai
Bo Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Tang', 18)}}的其他基金
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2047570 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
成纤维细胞分泌TGFβ1阻抑CD8+T淋巴细胞上皮向浸润在口腔白斑恶变中的作用机制及靶向干预研究
- 批准号:82301095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流体剪切力在胸主动脉瘤向胸主动脉夹层演变中的作用及机制研究
- 批准号:12372315
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
TEA结构域转录因子2调控干细胞亚稳态向基态多能性转变的机理研究
- 批准号:32300466
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
疏水FexC基催化剂上合成气向C4~C16线性α-烯烃的低碳、定向转化机制
- 批准号:22302149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2047570 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Research of polycyclic alkaloids from plants towards new biologically active substances
植物多环生物碱及新型生物活性物质的研究
- 批准号:
19K07152 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
高等学校理科の生物基礎における実施率を向上させるための簡易免疫実験の提案
提高高中理科生物基础知识实施率的简易免疫学实验建议
- 批准号:
19K02742 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Towards a Biologically Informed Intervention for Emotionally Dysregulated Adolescents and Adults with Autism Spectrum Disorder
职业:对患有自闭症谱系障碍的情绪失调青少年和成人进行生物学干预
- 批准号:
1844885 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
ダイオキシン受容体(AHR)のリガンド認識及び転写活性化機構の構造科学的解明
二恶英受体(AHR)配体识别和转录激活机制的结构科学阐明
- 批准号:
17J10586 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows