eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
基本信息
- 批准号:2325184
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematical models are a widely used tool for improving our understanding, ability to predict, and ability to control the behavior of biological systems. Such models are often encoded as chemical reaction networks (CRNs), involving large collections of reactions that describe how constituents of the system, such as proteins, change their states over time. CRN model components are often only partially known, and thus methods which mix theoretical physics-based models for known components, with techniques that estimate unknown components and their dynamics from experimental data, can improve their predictive capabilities. This is the domain of Scientific Machine Learning (SciML). This project will develop new SciML methods for constructing, simulating, and analyzing CRN models that include randomness in the evolution of protein states, an important feature to accurately predict the behavior of chemical systems within individual biological cells. The new methods will be applied to problems in systems and synthetic biology (the understanding of native, and the development of novel, cellular systems), but will also be applicable across a wide range of fields involving CRNs (including epidemiology, physical chemistry, and pharmacology). Via their incorporation into widely used open source software libraries of the SciML organization, the methods will be freely available for use by any researcher studying problems across science and engineering. Training opportunities will be provided for a postdoctoral scholar and an undergraduate researcher, who will gain experience working in interdisciplinary teams, developing SciML methods, integrating these methods into open source software, and applying the new software to study biological systems.This project extends the mathematical understanding of discrete stochastic derivative estimators to facilitate scaling Scientific Machine Learning (SciML) training techniques to chemical reaction networks (CRNs). One distinct difficulty in extending SciML to cellular systems is their proneness to noisy behaviors, as they are modeled as discrete stochastic jump processes via stochastic simulation algorithms such as the Gillespie method. Such processes are problematic for many SciML workflows which critically depend on automatic differentiation (AD) to scale training techniques. This is because there previously existed no general method for applying AD to them in an unbiased manner with low variance estimators. This project builds on a recent extension of AD to discrete stochastic processes which is capable of generating unbiased low variance derivative estimators. The rigorous connection between the generated stochastic process for the derivative estimator and the derivative probability evolution given by the sensitivity equations will be proven, thus establishing a firm theoretical underpinning for the unbiasedness and variance of the derivative estimator in the context of CRNs. The feasibility to deploy discrete stochastic AD (DSAD) on cellular models to perform model calibration will be demonstrated, and SciML universal differential equation methods for model discovery will be generalized to the theory-based data-driven discovery of missing reactions in CRNs. Finally, the applicability of these methods will be demonstrated on a range of cellular systems (including the B-cell antigen receptor signaling system, the σV lysozyme stress response system, and a mixed feedback oscillator).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学模型是一种广泛使用的工具,用于提高我们对生物系统行为的理解、预测和控制能力,此类模型通常被编码为化学反应网络 (CRN),即描述化学成分如何变化的大量反应。系统(例如蛋白质)会随着时间的推移而改变其状态,因此,将已知成分的基于理论物理的模型与根据实验数据估计未知成分及其动态的技术相结合的方法可以得到改进。这是他们的预测能力的领域。科学机器学习 (SciML)。该项目将开发新的 SciML 方法,用于构建、模拟和分析 CRN 模型,其中包括蛋白质状态演化的随机性,这是准确预测单个新生物细胞内化学系统行为的重要特征。方法将应用于系统和合成生物学中的问题(对天然的理解和新颖的开发,涉及细胞系统),但也将适用于 CRN 的广泛领域(包括流行病学、物理化学和药理学) )。 通过这些方法将被纳入 SciML 组织广泛使用的开源软件库中,任何研究科学和工程问题的研究人员都可以免费使用这些方法,并将为博士后学者和本科生研究人员提供培训机会,他们将获得经验。在跨学科团队中工作,开发 SciML 方法,将这些方法集成到开源软件中,并应用新软件来研究生物系统。该项目扩展了对离散随机导数估计器的数学理解,以促进将科学机器学习 (SciML) 训练技术扩展到化学反应网络(CRN)。将 SciML 扩展到细胞系统的一个明显困难是它们容易出现噪声行为,因为它们通过随机模拟算法(例如 Gillespie 方法)建模为离散随机跳跃过程,这样的过程对于许多严重依赖的 SciML 工作流程来说是有问题的。这是因为以前不存在使用低方差估计器以无偏方式将 AD 应用于它们的通用方法。能够生成无偏低方差导数估计量的随机过程将被证明,生成的导数估计量的随机过程与灵敏度方程给出的导数概率演化之间的严格联系,从而为无偏性和方差建立坚实的理论基础。将演示在 CRN 背景下部署离散随机 AD (DSAD) 来执行模型校准的可行性,并且将演示用于模型发现的 SciML 通用微分方程方法。最后,这些方法的适用性将在一系列细胞系统(包括 B 细胞抗原受体信号系统、σV 溶菌酶应激反应系统、该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Edelman其他文献
Oceananigans.jl: A model that achieves breakthrough resolution, memory and energy efficiency in global ocean simulations
Oceananigans.jl:在全球海洋模拟中实现突破性分辨率、内存和能源效率的模型
- DOI:
10.48550/arxiv.2309.06662 - 发表时间:
2023-09-13 - 期刊:
- 影响因子:0
- 作者:
Simone Silvestri;G. Wagner;Christopher Hill;Matin Raayai Ardakani;Johannes Blaschke;J. Campin;Valentin Churavy;Navid C Constantinou;Alan Edelman;John Marshall;Ali Ramadhan;Andre Souza;Raffaele Ferrari - 通讯作者:
Raffaele Ferrari
Random matrix theory
随机矩阵理论
- DOI:
10.1017/s0962492904000236 - 发表时间:
2005-04-19 - 期刊:
- 影响因子:14.2
- 作者:
Alan Edelman;N. Rao - 通讯作者:
N. Rao
BEYOND UNIVERSALITY IN RANDOM MATRIX THEORY 1
超越随机矩阵理论的普遍性 1
- DOI:
10.1002/cphc.201700731 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Alan Edelman;A. Guionnet;S. Péché - 通讯作者:
S. Péché
Nonlinear eigenvalue problems
非线性特征值问题
- DOI:
- 发表时间:
1998-09-14 - 期刊:
- 影响因子:0
- 作者:
Ross A. Lippert;Alan Edelman - 通讯作者:
Alan Edelman
Convex Network Flows
凸网络流
- DOI:
10.1016/j.jpowsour.2017.06.032 - 发表时间:
2024-03-31 - 期刊:
- 影响因子:9.2
- 作者:
Theo Diamandis;Guillermo Angeris;Alan Edelman - 通讯作者:
Alan Edelman
Alan Edelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Edelman', 18)}}的其他基金
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
- 批准号:
2103804 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
- 批准号:
2103804 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Framework: Software: Next-Generation Cyberinfrastructure for Large-Scale Computer-Based Scientific Analysis and Discovery
框架:软件:用于大规模计算机科学分析和发现的下一代网络基础设施
- 批准号:
1835443 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Algorithms for Beta Random Matrices: The Random Matrix Method of "Ghosts" and "Shadows"
合作研究:β随机矩阵的理论与算法:“鬼”与“影”的随机矩阵方法
- 批准号:
1016125 - 财政年份:2010
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
PetaBricks: A Language and Compiler for Scalability and Robustness
PetaBricks:具有可扩展性和鲁棒性的语言和编译器
- 批准号:
0832997 - 财政年份:2008
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Algorithms for Applied Multivariate Statistical Analysis
应用多元统计分析算法
- 批准号:
0608306 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Accurate and Efficient Matrix Computations with Structured Matrices
使用结构化矩阵进行准确高效的矩阵计算
- 批准号:
0314286 - 财政年份:2003
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Iterative methods for Non-Hermitian Problems and Related Matrix Analysis
非厄米问题的迭代方法及相关矩阵分析
- 批准号:
0209437 - 财政年份:2002
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
eMB: Collaborative Research: Fluid Dynamics and Infectious Diseases: An Integrated Modeling Framework
eMB:协作研究:流体动力学和传染病:集成建模框架
- 批准号:
2324692 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325078 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Advancing Inference of Phylogenetic Trees and Networks under Multispecies Coalescent with Hybridization and Gene Flow
eMB:合作研究:通过杂交和基因流推进多物种合并下的系统发育树和网络的推理
- 批准号:
2325775 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325196 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant