Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)

合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)

基本信息

  • 批准号:
    2324174
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-Technical Description:The world has seen an enormous increase in global connectivity, information processing, and information storage driven by advances in technologies that rely largely on traditional semiconductors. Their underlying material platforms, however, are facing enormous challenges. A future generation of electronic devices can be established using materials which exist in multiple electronic states. Materials and devices that can be switched from an insulator to a metal by an external trigger would revitalize the U.S. semiconductor ecosystem, providing new paths to low-power computing systems and integration into systems for 6G and beyond applications. The project goal is to design and discover materials exhibiting such insulator-to-metal transitions (IMT) that enable room-temperature operation and display large changes in electrical resistivity. The research team, which comprises interdisciplinary expertise in computational and experimental materials physics, data science, and device engineering, aims to enable a culture shift in materials research, development, and deployment through training a well-equipped and diverse workforce with proficiencies in data-driven discovery of advanced materials. Leveraging Materials Genome Initiative principles, the team will deliver a tightly integrated codesign methodology to facilitate modeling and synthesis of new IMT materials with superior properties, and ultimately guide the design towards record-setting device performance to strengthen American leadership in future computing, storage and communication technologies and industries. Technical Description:The goal of the Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT) project is to implement an accelerated discovery and codesign engine for efficient deployment of insulator-metal transition (IMT) materials traditionally marred by sparse prior data and system-level constraints. Achieving this goal requires moving beyond conventional, linear approaches to materials discovery, transforming them into a cyclic and iterative process. The project formulates new computational approaches that fuse computational data with high-throughput materials synthesis and characterization data to overcome key challenges of (i) Materials Discovery from Sparse & Expensive Data, (ii) Efficient Decoding of High-Dimensional Experimental Data, and (iii) Property-Performance Mismatch upon Integration. Their confluence hinders the advancement of novel material platforms for future microelectronic and wireless communication technologies. The project goal will be executed by creating integrated protocols that transform the standard sequential discovery steps (hypothesis generation, synthesis, characterization) into closed-loops fashioned to overcome these challenges: (1) AI-Aided Virtual Screening and Adaptive Discovery, (2) Accelerated Synthesis and Characterization Analytics, and (3) Materials Integration, Device Fabrication, and Codesign. Success with this framework will allow for the realization of material objectives within device constraints and deliver the following outcomes: (1) new classes of single and two-phase IMT materials (2) distributed in open-access databases, (3) theories of IMT behavior, (4) novel IMT thin film synthesis methods, (5) contactless characterization methods to improve throughput, (6) adaptive learning methods to achieve codesigned materials and devices, and (7) quantitative understanding of device performance to benefit future scalability and manufacturing with industrial partners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:在主要依赖传统半导体的技术进步的推动下,全球连接、信息处理和信息存储大幅增长。然而,它们的底层材料平台正面临着巨大的挑战。未来一代的电子设备可以使用以多种电子状态存在的材料来建立。可通过外部触发器从绝缘体切换为金属的材料和设备将重振美国半导体生态系统,为低功耗计算系统和集成到 6G 及其他应用系统中提供新途径。该项目的目标是设计和发现具有这种绝缘体到金属转变(IMT)的材料,使其能够在室温下运行并显示出电阻率的巨大变化。该研究团队由计算和实验材料物理、数据科学和设备工程方面的跨学科专业知识组成,旨在通过培训一支装备精良且精通数据的多元化员工队伍,实现材料研究、开发和部署的文化转变。推动先进材料的发现。利用材料基因组计划原则,该团队将提供紧密集成的协同设计方法,以促进具有卓越性能的新型 IMT 材料的建模和合成,并最终指导设计实现创纪录的设备性能,以加强美国在未来计算、存储和通信领域的领导地位技术和产业。技术描述:电子相变加速设计、发现和部署 (ADEPT) 项目的目标是实施加速发现和协同设计引擎,以有效部署传统上因稀疏的先验数据和系统级约束。实现这一目标需要超越传统的线性材料发现方法,将其转变为循环和迭代的过程。该项目制定了新的计算方法,将计算数据与高通量材料合成和表征数据融合,以克服以下关键挑战:(i)从稀疏和昂贵的数据中发现材料,(ii)高维实验数据的高效解码,以及(iii) ) 集成时的属性-性能不匹配。它们的融合阻碍了未来微电子和无线通信技术的新型材料平台的进步。该项目的目标将通过创建集成协议来实现,该协议将标准顺序发现步骤(假设生成、综合、表征)转变为闭环,以克服这些挑战:(1)人工智能辅助虚拟筛选和自适应发现,(2)加速合成和表征分析,以及 (3) 材料集成、器件制造和协同设计。该框架的成功将允许在设备限制内实现材料目标,并带来以下成果:(1) 新类别的单相和两相 IMT 材料 (2) 分布在开放访问数据库中,(3) IMT 理论行为,(4) 新颖的 IMT 薄膜合成方法,(5) 提高吞吐量的非接触式表征方法,(6) 实现协同设计的材料和设备的自适应学习方法,以及 (7) 对设备性能的定量理解,以有利于未来的可扩展性和制造与工业伙伴合作。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Divine Kumah其他文献

Divine Kumah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Divine Kumah', 18)}}的其他基金

CAREER: Confining Magnetism to Two-Dimensions in Transition Metal Oxide Atomic Layers
职业:将磁性限制在过渡金属氧化物原子层的二维范围内
  • 批准号:
    1751455
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了