DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling

DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模

基本信息

项目摘要

Despite years of recycling efforts, only about 10 percent of polymer waste ends up in recycling facilities, with the majority still accumulating in landfills or oceans, emphasizing the need for eco-friendly materials combining renewable sourcing, sustainable processing, and biodegradability. Thermoformable biopolymer assemblies or bioplastics are eco-friendly materials that could be sourced from biological cell or tissue (biomatter), without expensive and wasteful extraction and pre-processing. The most significant limitation in the ability to design these bioplastics is a poor understanding of the fundamental mechanisms controlling the transformation of biomatter to cohesive bioplastics. This Designing Materials to Revolutionize and Engineer our Future (DMREF) grant supports research that will combine high-throughput data capture, multiscale modeling, and machine learning to understand the molecular and chemical mechanisms controlling the transition from organism to bioplastic during processing. With that understanding, design pathways will be developed to tailor the processing and composition of the initial structure to control the macroscopic properties, and degradation that occurs during and after use. The broad impact of this work will be a new class of entirely biodegradable plastics with performance comparable to commodity plastics but manufactured sustainably. To support the next-generation sustainable materials workforce, the grant will also support mentoring of graduate and undergraduate students, active engagement in outreach activities, and efforts to enhance diversity and inclusivity in STEM.An emerging transformative concept in developing eco-friendly materials is to use biological matter without any extraction process to create bioplastics. Significant challenges remain in understanding how mixtures of biopolymers transform into thermoformable bioplastics and how the processing parameters control structure and properties. To provide key insights, this project will use high throughput methods to measure processing, spectroscopic, and morphology features and apply machine learning methods to identify the key descriptors controlling the transformation from organism to plastic. Molecular dynamics simulations and high-fidelity experiments will augment the understanding of the reactions towards bioplastic formation as well as biodegradation. Detailed structure and property measurements will be used to validate a finite element analysis tool that will enable the identification of the optimal structure to achieve properties comparable to commercial plastics using high throughput methods. Spirulina, an abundant photosynthetic microorganism that has been demonstrated to produce bioplastics when processed with heat and pressure will serve as a proof-of-concept system. The fundamental contribution of this project will be a design approach that accounts for the complexities of the transition of raw biomatter to bioplastics, exemplifying the Materials Genome Initiative's emphasis on predictive materials design and data-driven approaches to foster sustainable and innovative materials for a circular economy. This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG), the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS), and the Division of Information and Intelligent Systems (IIS) of the Directorate for Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管经过多年的回收努力,只有约 10% 的聚合物废物最终进入回收设施,其中大部分仍堆积在垃圾填埋场或海洋中,这凸显了对结合可再生来源、可持续加工和生物降解性的环保材料的需求。可热成型的生物聚合物组件或生物塑料是环保材料,可以源自生物细胞或组织(生物物质),无需昂贵且浪费的提取和预处理。设计这些生物塑料的能力的最大限制是对控制生物物质转化为粘性生物塑料的基本机制了解甚少。这项“设计材料以彻底改变和设计我们的未来”(DMREF) 拨款支持的研究将结合高通量数据捕获、多尺度建模和机器学习,以了解在加工过程中控制从有机体到生物塑料转变的分子和化学机制。有了这种理解,将开发设计途径来定制初始结构的加工和组成,以控制宏观特性以及使用过程中和使用后发生的降解。这项工作的广泛影响将是一种新型完全生物降解塑料,其性能可与商品塑料相媲美,但可持续制造。为了支持下一代可持续材料劳动力,这笔赠款还将支持对研究生和本科生的指导、积极参与外展活动以及努力增强 STEM 的多样性和包容性。开发环保材料的一个新兴变革概念是使用生物物质而不经过任何提取过程来制造生物塑料。在了解生物聚合物混合物如何转化为可热成型生物塑料以及加工参数如何控制结构和性能方面仍然存在重大挑战。为了提供关键见解,该项目将使用高通量方法来测量加工、光谱和形态特征,并应用机器学习方法来识别控制从有机体到塑料转变的关键描述符。分子动力学模拟和高保真实验将增强对生物塑料形成和生物降解反应的理解。详细的结构和性能测量将用于验证有限元分析工具,该工具将能够识别最佳结构,以使用高通量方法实现与商业塑料相当的性能。螺旋藻是一种丰富的光合微生物,已被证明在经过热和压力处理时可以产生生物塑料,将作为概念验证系统。该项目的根本贡献将是一种设计方法,该方法考虑了原始生物物质向生物塑料转变的复杂性,体现了材料基因组计划对预测材料设计和数据驱动方法的重视,以促进循环经济的可持续和创新材料。该项目得到了工程部 (ENG) 土木、机械和制造创新部 (CMMI)、数学和物理科学部 (MPS) 材料研究部 (DMR) 以及计算机和信息科学与工程理事会 (CISE) 的信息和智能系统 (IIS)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linda Schadler其他文献

Linda Schadler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linda Schadler', 18)}}的其他基金

Renewable and Compostable Fungus Based Plastics - Establishing the Structure/Property/Processing Relationships to Facilitate Commercialization
可再生和可堆肥的真菌塑料 - 建立结构/性能/加工关系以促进商业化
  • 批准号:
    1362234
  • 财政年份:
    2014
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Collaborative Research: NanoMine: Data Driven Discovery for Nanocomposites
合作研究:NanoMine:数据驱动的纳米复合材料发现
  • 批准号:
    1310318
  • 财政年份:
    2013
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Polymer Nanodielectric Systems Using a Descriptor-Based Design Methodology
合作研究:使用基于描述符的设计方法工程聚合物纳米电介质系统
  • 批准号:
    1333977
  • 财政年份:
    2013
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Tribology of Nanocomposites
目标:合作研究:纳米复合材料的摩擦学
  • 批准号:
    0218716
  • 财政年份:
    2003
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Support for a Joint TMS The Minerals, Metals, and Materials Society/Society of Plastics Engineers Conference on Polymer Materials
支持 TMS 矿物、金属和材料协会/塑料工程师协会关于聚合物材料的联合会议
  • 批准号:
    0107879
  • 财政年份:
    2001
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
A Ph.D. Co-Op Program
博士学位
  • 批准号:
    9975693
  • 财政年份:
    1999
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Acquisition of a State of the Art Micro Raman Spectrometer for Research and Education
采购最先进的微型拉曼光谱仪用于研究和教育
  • 批准号:
    9975691
  • 财政年份:
    1999
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for Undergraduates in Materials Science and Engineering
REU 网站:材料科学与工程本科生的研究经验
  • 批准号:
    9731960
  • 财政年份:
    1998
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
GOALI: Mechanical and Molecular Behavior of Nanoparticulate/Polymer Composites
目标:纳米颗粒/聚合物复合材料的机械和分子行为
  • 批准号:
    9871894
  • 财政年份:
    1998
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Hands-On Modules for Use in a Chemistry of Materials Course
用于材料化学课程的实践模块
  • 批准号:
    9850825
  • 财政年份:
    1998
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了