Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
基本信息
- 批准号:2323667
- 负责人:
- 金额:$ 34.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: The detection of infrared (IR) light underpins modern science, technology, and society in profound ways, permitting the observation of objects and information that are invisible to conventional detectors, imagers, and cameras. However, despite decades of development, current IR semiconductors possess numerous drawbacks that limit their widespread use and the development of critical emerging technologies. This project will investigate completely new light-matter interactions, theoretical and computational approaches, novel polymer semiconductors with tailored electronic structures, and devices to enable optical to electrical transduction of IR light, a fundamentally new capability for organic materials. These materials and devices will satisfy the functional and economic requirements for technologies that can address critical national needs with global societal impacts in climate change, manufacturing, energy, healthcare, information science, consumer applications, future aerospace and defense-wide applications, and many others. New theoretical, synthetic, characterization, and device advances will coalesce with Air Force Research Labs and industry partnerships to produce new materials and devices for technology transfer. Workforce development efforts will focus on multidisciplinary education through co-mentorship, industry and Department of Defense interactions, outreach to underrepresented high school and undergraduate students, and professional development actives for research and leadership training.Technical Description: This project will address grand challenges to revolutionize our understanding of charge photogeneration and emerging solid-state transport phenomena in order to enable optical to electrical transduction of IR light from organic materials. To achieve this, the research team will establish a closed loop between theory, computation, synthesis, spectroscopy, and device fabrication, engineering, and physics. Revolutionary ab initio and time-dependent quantum chemical calculations that incorporate non-adiabatic dynamics will for the first-time provide detailed insight into IR excitations in correlated organic materials with complex excitonic, vibrational, polaronic, and spin properties. Systematic theory-synthesis-spectroscopic approaches will be developed and applied to benchmark these new theoretical approaches and correlate molecular design with emerging functionality and coherent quasiparticle dynamics across multiple spatiotemporal timescales. This will be related to the fundamental electro-optical physics and device performance, enabling new functionality. These new, foundational design principles will be combined with experimentally validated physical structure-property models and data-driven machine learning methods to simulate new polymer structures, rapidly screen materials candidates, improve performance, and create new material libraries. This will create a comprehensive materials genome for conjugated polymers that operate throughout the IR. Thus, this project will enable fundamentally new scientific capabilities and revolutionary performance in organic electronic devices, acting as a core enabler of transformative technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:红外 (IR) 光探测深刻地支撑着现代科学、技术和社会,允许观察传统探测器、成像仪和相机不可见的物体和信息。然而,尽管经过数十年的发展,当前的红外半导体仍具有许多缺点,限制了其广泛使用和关键新兴技术的发展。该项目将研究全新的光与物质相互作用、理论和计算方法、具有定制电子结构的新型聚合物半导体,以及实现红外光光电转换的设备,这是有机材料的一种全新功能。这些材料和设备将满足技术的功能和经济要求,这些技术可以满足气候变化、制造、能源、医疗保健、信息科学、消费者应用、未来航空航天和国防应用等领域的关键国家需求和全球社会影响。 。新的理论、合成、表征和设备进展将与空军研究实验室和行业合作伙伴相结合,生产用于技术转让的新材料和设备。劳动力发展工作将侧重于通过共同指导、工业界和国防部的互动、对代表性不足的高中生和本科生的推广以及研究和领导力培训的专业发展活动来进行多学科教育。技术描述:该项目将解决变革的巨大挑战我们对电荷光生和新兴固态传输现象的理解,以便实现有机材料中红外光的光到电转换。为了实现这一目标,研究团队将在理论、计算、合成、光谱学以及器件制造、工程和物理之间建立闭环。革命性的从头算和时间相关的量子化学计算结合了非绝热动力学,将首次提供对具有复杂激子、振动、极化和自旋特性的相关有机材料中红外激发的详细了解。将开发并应用系统的理论-合成-光谱方法来对这些新的理论方法进行基准测试,并将分子设计与跨多个时空时间尺度的新兴功能和相干准粒子动力学联系起来。这将与基本的电光物理和设备性能相关,从而实现新的功能。这些新的基础设计原理将与经过实验验证的物理结构性能模型和数据驱动的机器学习方法相结合,以模拟新的聚合物结构、快速筛选候选材料、提高性能并创建新的材料库。这将为在整个红外范围内运行的共轭聚合物创建一个全面的材料基因组。因此,该项目将为有机电子器件带来全新的科学能力和革命性的性能,成为变革性技术的核心推动者。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoxiang Hu其他文献
Hetero-biicosahedral [Au24Pd(PPh3)10(SC2H4Ph)5Cl2]+ nanocluster: selective synthesis and optical and electrochemical properties.
- DOI:
10.1039/c8nr04078h - 发表时间:
2018-10-18 - 期刊:
- 影响因子:6.7
- 作者:
L. V. Nair;Sakiat Hossain;Shunjiro Takagi;Yukari Imai;Guoxiang Hu;Shota Wakayama;B. Kumar;Wataru Kuras - 通讯作者:
Wataru Kuras
Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water.
过渡金属的通用表面工程可在中性水中实现卓越的电催化析氢。
- DOI:
10.1021/jacs.7b06434 - 发表时间:
2017-08-22 - 期刊:
- 影响因子:15
- 作者:
Bo You;Xuan Liu;Guoxiang Hu;S. Gul;J. Yano;D. Jiang;Yujie Sun - 通讯作者:
Yujie Sun
A combined first principles study of the structural, magnetic, and phonon properties of monolayer CrI3.
单层 CrI3 的结构、磁性和声子特性的综合第一性原理研究。
- DOI:
10.1063/5.0074848 - 发表时间:
2021-10-13 - 期刊:
- 影响因子:0
- 作者:
Daniel Staros;Guoxiang Hu;J. Tiihonen;R. Nanguneri;J. Krogel;M.;Ch;ler Bennett;ler;O. Heinonen;P. Ganesh;B. Rubenstein - 通讯作者:
B. Rubenstein
Dual Roles of Polymeric Capping Ligands in the Surface-Protected Etching of Colloidal Silica.
聚合物封端配体在胶体二氧化硅表面保护蚀刻中的双重作用。
- DOI:
10.1021/acsami.0c08808 - 发表时间:
2020-08-26 - 期刊:
- 影响因子:9.5
- 作者:
Ji Feng;Fan Yang;Guoxiang Hu;T. Brinzari;Zuyang Ye;Jinxing Chen;Saide Tang;Shiyou Xu;V. Dubovoy;L. Pan;Yadong Yin - 通讯作者:
Yadong Yin
Voltage-Driven Molecular Catalysis: A Promising Approach to Electrosynthesis
电压驱动分子催化:一种有前途的电合成方法
- DOI:
10.1021/acscatal.3c03644 - 发表时间:
2023-11-27 - 期刊:
- 影响因子:12.9
- 作者:
Koushik Barman;Yu Chen;Shu Wu;Guoxiang Hu;M. Mirkin - 通讯作者:
M. Mirkin
Guoxiang Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoxiang Hu', 18)}}的其他基金
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 34.63万 - 项目类别:
Continuing Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 34.63万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323118 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
- 批准号:
2323316 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant