Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain

合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益

基本信息

项目摘要

Proposal Number: 2048390 (Lead), 2048397 & 2048400Principal Investigator: Amirhossein Goldan (PI), Ayaskanta Sahu (Co-PI) & Dragica Vasileska (Co-PI)Title: Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche GainInstitution: State University of New York Stony Brook (Lead), New York University & Arizona State UniversityNontechnical AbstractThe search for a solid-state photodetector that mimics the behavior of a classical vacuum photomultiplier tube has been a long-standing quest because of the highly stochastic impact ionization process in single-crystalline semiconductors. Amorphous selenium is the only disordered semiconductor that produces avalanche multiplication gain while exhibiting a very low excess noise factor due to non-ballistic and single-carrier impact ionization. The primary objective of this project is to fabricate and characterize high sensitivity solid-state photomultipliers by fully exploiting the deterministic avalanche multiplication properties of amorphous selenium via a solution-processed oxide blocking layer with a high dielectric constant. From the theoretical perspective, the noise-free nature of the hole impact ionization process will be modeled in amorphous selenium to enhance scientific insight into hot carrier transport in disordered structures. The resulting technology can be utilized in a wide range of advanced fields and applications such as medical diagnostic imaging, high energy physics, Cherenkov imaging detectors and trackers, optical communications, and time-domain spectroscopy. The broader impact of this project involves training of students (graduate, undergraduate, and under-represented) in this exciting field of research, and dissemination of tools and materials online.Technical AbstractAmorphous selenium is poised to revolutionize solid-state photodetection and imaging through its noise-free single-carrier avalanche multiplication gain. Currently, to achieve high dynamic range and linear mode operation, the detectors used for low-light detection are almost exclusively made of vacuum photomultiplier tubes, where only electrons exist and are multiplied deterministically by the dynodes. However, photomultiplier tubes are bulky, have poor quantum efficiency in the visible spectrum, and cannot be made into an imaging array. Although solid-state crystalline semiconductors are also used as avalanche photodiodes, the amount of enhancement in signal-to-noise ratio is often severely limited by excess noise due to the stochastic nature of the avalanche impact ionization process. Thus, the optimal signal-to-noise ratio typically occurs at very low gains. This work proposes a true solid-state alternative to the vacuum photomultiplier tube using amorphous selenium as the bulk avalanche i-layer, which is a unique disordered photosensing material. In this amorphous selenium layer, hole carrier transport can be shifted entirely from localized to extended states, where holes experience deterministic and non-Markovian impact ionization avalanche. To utilize this material property in devices and imagers, and to achieve reliable and repeatable avalanche gain without irreversible breakdown, a non-insulating n-type hole-blocking/electron-transporting layer is required. This work proposes use of room-temperature, solution-processed quantum-dots, as the high-k dielectric hole-blocking n-layer. Solution synthesis of colloidal quantum dots allows for high-quality stoichiometric and vacancy-free crystals with potential for room-temperature deposition in the desired reverse-biased p-i-n structure, without inducing any crystallization of amorphous selenium, as opposed to other incompatible high-temperature fabrication techniques. This methodology enables, for the first time, reaching an avalanche gain of 10E6 or beyond using a solid-state material. Computational models that explore the physics of the hole blocking layers shall be created to understand and optimize device performance. To this effect, an in-house kinetic Monte Carlo code used to model transport through defects will be developed. Next, an in-house full-band Monte Carlo simulator, that utilizes the full band structure of selenium, will be established to examine the hole impact ionization process in bulk selenium. As a final step, the kinetic and the full-band Monte Carlo results will be coupled for computer-aided design simulations, to provide design guidelines for the fabrication of more efficient selenium photomultipliers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提案编号:2048390(牵头人)、2048397 和 2048400 首席研究员:Amirhossein Goldan (PI)、Ayaskanta Sahu (Co-PI) 和 Dragica Vasileska (Co-PI) 标题:合作研究:具有高倍率的固态硒光电倍增器K 介电阻挡层可实现高、无噪声雪崩增益机构:纽约州立大学石溪分校(牵头)、纽约大学和亚利桑那州立大学非技术摘要 寻找模仿经典真空光电倍增管行为的固态光电探测器一直是一个长期的探索,因为它的高度单晶半导体中的随机碰撞电离过程。非晶硒是唯一一种能够产生雪崩倍增增益的无序半导体,同时由于非弹道和单载流子碰撞电离而表现出非常低的过量噪声系数。该项目的主要目标是通过溶液处理的高介电常数氧化物阻挡层充分利用非晶硒的确定性雪崩倍增特性来制造和表征高灵敏度固态光电倍增管。从理论角度来看,空穴碰撞电离过程的无噪声特性将在非晶硒中进行建模,以增强对无序结构中热载流子传输的科学洞察。由此产生的技术可用于广泛的先进领域和应用,例如医学诊断成像、高能物理、切伦科夫成像探测器和跟踪器、光通信和时域光谱学。该项目的更广泛影响包括对这一令人兴奋的研究领域的学生(研究生、本科生和代表性不足)进行培训,以及在线传播工具和材料。 技术摘要非晶硒有望通过其自身特性彻底改变固态光电探测和成像。无噪声单载波雪崩倍增增益。目前,为了实现高动态范围和线性模式操作,用于弱光检测的探测器几乎完全由真空光电倍增管制成,其中仅存在电子并通过倍增极确定性地倍增。但光电倍增管体积庞大,可见光谱量子效率较差,无法制成成像阵列。尽管固态晶体半导体也用作雪崩光电二极管,但由于雪崩碰撞电离过程的随机性,信噪比的增强量通常受到过量噪声的严重限制。因此,最佳信噪比通常出现在非常低的增益下。这项工作提出了一种真空光电倍增管的真正固态替代品,使用非晶硒作为体雪崩 i 层,这是一种独特的无序光敏材料。在这种非晶硒层中,空穴载流子传输可以完全从局域态转变为扩展态,其中空穴经历确定性和非马尔可夫碰撞电离雪崩。为了在器件和成像仪中利用这种材料特性,并实现可靠且可重复的雪崩增益而不发生不可逆击穿,需要非绝缘 n 型空穴阻挡/电子传输层。这项工作建议使用室温溶液处理的量子点作为高 k 电介质空穴阻挡 n 层。与其他不相容的高温制造相比,胶体量子点的溶液合成可实现高质量的化学计量和无空位晶体,并具有在所需的反向偏置 p-i-n 结构中进行室温沉积的潜力,而不会诱导非晶硒的任何结晶。技术。该方法首次使用固态材料实现了 10E6 或更高的雪崩增益。应创建探索空穴阻挡层物理性质的计算模型,以了解和优化器件性能。为此,将开发用于模拟缺陷传输的内部动力学蒙特卡罗代码。 接下来,将建立一个利用硒的全能带结构的内部全能带蒙特卡罗模拟器,以研究块状硒中的空穴碰撞电离过程。最后一步,将动力学和全波段蒙特卡罗结果结合起来进行计算机辅助设计模拟,为制造更高效的硒光电倍增管提供设计指南。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vertical Architecture Solution-Processed Quantum Dot Photodetectors with Amorphous Selenium Hole Transport Layer
具有非晶硒空穴传输层的垂直架构溶液处理量子点光电探测器
  • DOI:
    10.1021/acsphotonics.2c01353
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Mukherjee, Atreyo;Kannan, Haripriya;Triet Ho, Le Thanh;Han, Zhihang;Stavro, Jann;Howansky, Adrian;Nooman, Neha;Kisslinger, Kim;Léveillé, Sébastien;Kizilkaya, Orhan;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amirhossein Goldan其他文献

[1-11C]-Butanol Positron Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects
[1-11C]-丁醇正电子发射断层扫描显示老年淀粉样蛋白阳性受试者的大脑到鼻甲通路受损
  • DOI:
    10.1186/s12987-024-00530-y
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Neel H. Mehta;Xiuyuan H. Wang;Samantha A. Keil;K. Xi;Liangdong Zhou;Kevin Lee;Wanbin Tan;Edward Spector;Amirhossein Goldan;James Kelly;N. Karakatsanis;P. D. Mozley;Sadek Nehmeh;J. L. Chazen;Simon Morin;John Babich;Jana Ivanidze;S. Pahlajani;E. Tanzi;Leslie Saint;Tracy Butler;Kewei Chen;H. Rusinek;R. Carare;Yi Li;Gloria C. Chiang;M. D. de Leon
  • 通讯作者:
    M. D. de Leon

Amirhossein Goldan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amirhossein Goldan', 18)}}的其他基金

Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
  • 批准号:
    2048390
  • 财政年份:
    2021
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant

相似国自然基金

坚硬岩层破断诱发巷道冲击地压模拟的连续-非连续方法研究及应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
裂隙性坚硬隧道围岩的岩爆机理及强度模型研究
  • 批准号:
    51808458
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
3D打印栅格状胎体刀刃化唇面对金刚石钻头破碎坚硬岩层的影响机制研究
  • 批准号:
    41872186
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于Rough集的坚硬顶板条件下煤与瓦斯突出预警机制研究
  • 批准号:
    51874121
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
  • 批准号:
    51274089
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329651
  • 财政年份:
    2024
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330318
  • 财政年份:
    2024
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342024
  • 财政年份:
    2024
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329652
  • 财政年份:
    2024
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了