RHEOLOGY, ENTROPY PRODUCTION AND RATCHETING OF DEFORMABLE ACTIVE SYSTEMS

可变形主动系统的流变学、熵产生和棘轮

基本信息

  • 批准号:
    2321925
  • 负责人:
  • 金额:
    $ 34.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY This award supports theoretical research and education that aims at understanding three important aspects of active materials that are currently unexplored. Active matter is an exciting new field in materials engineering and has come into prominence over the last decade. This occurred because of the development of micro-particles capable of self-propulsion. One can think of these particles as synthetic analogs of bacteria whose shape, surface chemistry and velocity can be designed in a lab. There are several fundamental questions that need to be addressed in this field and that offer new opportunities for the development of the next generation of smart materials. What is the elastic response to external stimuli of materials formed by active particles? This is an important problem that can improve our understanding of the mechanical properties of a large number of materials, from biofilms to epithelial tissue. Another unexplored issue concerns the behavior of active surfaces. Unlike synthetic vesicles, the motion of a biological cell is completely determined by complex biochemical reactions. This makes their behavior similar to that of active systems. It is therefore important to understand how surfaces/vesicles respond to active forces. For instance, fibroblasts and epithelial cancerous cells can acquire directional motion when confined within rigid, asymmetric micro-channels. The PI will explore to what extent such a behavior can be captured by a much simpler system: a synthetic vesicle loaded with active particles. The goal is to develop simple synthetic analogs of biological cells capable of mimicking their mechanical behavior. Finally, one of the main characteristics of active systems is that they break time-reversal symmetry, i.e. running time backwards on a particle trajectory does take the particle back along the same path from which it came. The degree to which this happens in a system can be quantified by measuring Entropy Production. The team will measure this quantity for a number of active systems and establish a link between spatial gradients in Entropy Production and the degree to which active systems are out of equilibrium and capable of performing work. The outcomes of this research will provide insight into how to design stimuli-responsive materials capable of performing work at the microscale. The numerical tools developed for this project should be transferable to other active systems and will have important implications for a number of biological problems that rely on similar physical mechanisms. The award contributes to the education of undergraduate and graduate students which the PI will recruit to participate in these projects, and they will have first-hand exposure to cutting-edge numerical and statistical methods to model active systems. Furthermore, an outreach plan in collaboration with a number of on-campus organizations such as WISC (Women in Science at Columbia), whose efforts are dedicated to the advancement of women and underrepresented minorities in the sciences, technology, engineering and math, is currently underway, and will be further extended.TECHNICAL SUMMARYThis award supports theoretical research and education that aims at understanding three important issues of active materials that are currently unexplored. The first issue concerns the rheological properties of active condensates. Although a large body of work has been devoted to studying self-assembly, dynamics and the phase behavior of active colloidal particles, limited work has been done to understand the elastic properties of active condensates and their response to external stimuli. This is a fundamental problem that needs to be addressed to better characterize the mechanical properties of these materials. The second issue concerns the interplay between elastic and active forces on fluid vesicles using models that allow for topological transitions. The PI will explore under what conditions rectification can occur when giant unilamellar vesicles are loaded with active particles. While a good amount of work has been done to understand motion rectification of single active particles, not much is known about the transport properties of soft, deformable interfaces activated by self-propelling particles across micro-channels. This is an important problem given that fibroblasts and epithelial cancerous cells can acquire directional motion when confined within asymmetric, periodic channels, and would present a minimal model for the description of such a complex system. The third issue deals with a fundamental question about the very nature of active systems. Although the most intriguing phenomenological behavior of active systems arises, at the most fundamental level, because of time-reversal symmetry breaking, and entropy production is the hallmark signature of lack of equilibrium, a clear relationship between inhomogeneities in local entropy production and the degree to which active systems are out of equilibrium and capable to perform work has not been adequately established. The PI will explore how knowledge of spatial gradients in entropy production can be exploited to maximize the work active systems can perform at the microscale. The outcomes of this research will advance our current knowledge of statistical physics and will provide insight into how to design stimuli-responsive materials capable of performing work at the microscale. The numerical tools developed for this project should be transferable to other active systems and will have important implications for a number of biological problems that rely on similar physical mechanisms. The award contributes to the education of undergraduate and graduate students which the PI will recruit to participate in these projects, and they will have first-hand exposure to cutting-edge numerical and statistical methods to model active systems. Furthermore, an outreach plan in collaboration with a number of on-campus organizations such as WISC (Women in Science at Columbia), whose efforts are dedicated to the advancement of women and underrepresented minorities in the sciences, technology, engineering and math, is currently underway, and will be further extended.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要 该奖项支持理论研究和教育,旨在了解目前尚未探索的活性材料的三个重要方面。活性物质是材料工程中一个令人兴奋的新领域,并在过去十年中脱颖而出。这是由于能够自我推进的微粒子的发展而发生的。人们可以将这些颗粒视为细菌的合成类似物,其形状、表面化学和速度可以在实验室中设计。该领域有几个基本问​​题需要解决,并为下一代智能材料的发展提供了新的机遇。活性粒子形成的材料对外界刺激的弹性响应如何?这是一个重要的问题,可以提高我们对从生物膜到上皮组织的大量材料的机械性能的理解。另一个尚未探索的问题涉及活动表面的行为。与合成囊泡不同,生物细胞的运动完全由复杂的生化反应决定。这使得它们的行为类似于主动系统。因此,了解表面/囊泡如何响应主动力非常重要。例如,成纤维细胞和上皮癌细胞在被限制在刚性、不对称的微通道内时可以获得定向运动。 PI 将探索一个更简单的系统可以在多大程度上捕获这种行为:装载活性颗粒的合成囊泡。目标是开发能够模仿生物细胞机械行为的简单合成类似物。最后,主动系统的主要特征之一是它们打破了时间反转对称性,即在粒子轨迹上向后运行时间确实使粒子沿着它来时的相同路径返回。系统中发生这种情况的程度可以通过测量熵产生来量化。该团队将测量许多活跃系统的这个量,并在熵产生的空间梯度与活跃系统失衡和能够执行工作的程度之间建立联系。 这项研究的结果将有助于深入了解如何设计能够在微观尺度上发挥作用的刺激响应材料。为该项目开发的数值工具应该可以转移到其他活跃系统,并将对依赖类似物理机制的许多生物问题产生重要影响。该奖项有助于 PI 将招募参与这些项目的本科生和研究生的教育,他们将直接接触到对主动系统进行建模的尖端数值和统计方法。此外,目前正在与 WISC(哥伦比亚科学女性)等一些校内组织合作制定一项外展计划,该计划致力于提高科学、技术、工程和数学领域女性和代表性不足的少数群体的地位。正在进行中,并将进一步扩展。技术摘要该奖项支持理论研究和教育,旨在了解目前尚未探索的活性材料的三个重要问题。第一个问题涉及活性冷凝物的流变特性。尽管大量的工作致力于研究活性胶体颗粒的自组装、动力学和相行为,但在了解活性凝聚物的弹性特性及其对外部刺激的响应方面所做的工作却很有限。这是一个需要解决的基本问题,以便更好地表征这些材料的机械性能。第二个问题涉及使用允许拓扑转变的模型来研究流体囊泡上的弹性力和主动力之间的相互作用。 PI 将探索当巨型单层囊泡负载活性颗粒时,在什么条件下可以发生整流。虽然为了理解单个活性粒子的运动校正已经做了大量的工作,但对于跨微通道的自推进粒子激活的柔软、可变形界面的传输特性知之甚少。这是一个重要的问题,因为成纤维细胞和上皮癌细胞在被限制在不对称的周期性通道内时可以获得定向运动,并且将为描述这种复杂系统提供一个最小模型。第三个问题涉及有关主动系统本质的基本问题。尽管主动系统最有趣的现象学行为在最基本的层面上是由于时间反转对称性破缺而出现的,并且熵产生是缺乏平衡的标志,局部熵产生的不均匀性与熵产生的程度之间存在明显的关系。哪些主动系统失去平衡并能够做功尚未充分确定。 PI 将探索如何利用熵产生中的空间梯度知识来最大化活动系统在微观尺度上执行的工作。 这项研究的成果将增进我们目前对统计物理学的了解,并将深入了解如何设计能够在微观尺度上工作的刺激响应材料。为该项目开发的数值工具应该可以转移到其他活跃系统,并将对依赖类似物理机制的许多生物问题产生重要影响。该奖项有助于 PI 将招募参与这些项目的本科生和研究生的教育,他们将直接接触到对主动系统进行建模的尖端数值和统计方法。此外,目前正在与 WISC(哥伦比亚科学女性)等一些校内组织合作制定一项外展计划,该计划致力于提高科学、技术、工程和数学领域女性和代表性不足的少数群体的地位。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angelo Cacciuto其他文献

Quantitative analogy between polymer-grafted nanoparticles and patchy particles
  • DOI:
    10.1039/c4sm02295e
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Makoto Asai;Angelo Cacciuto;Sanat K. Kumar
  • 通讯作者:
    Sanat K. Kumar
Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles
  • DOI:
    10.1039/c6sm02171a
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Mariah Chambers;Stewart Anthony Mallory;Heather Malone;Yuan Gao;Stephen M. Anthony;Yi Yi;Angelo Cacciuto;Yan Yu
  • 通讯作者:
    Yan Yu

Angelo Cacciuto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angelo Cacciuto', 18)}}的其他基金

Reconfigurable Active Matter
可重构活性物质
  • 批准号:
    2003444
  • 财政年份:
    2021
  • 资助金额:
    $ 34.49万
  • 项目类别:
    Standard Grant
TOWARDS SELF-ASSEMBLYING ACTIVE MICRO-STRUCTURES
迈向自组装活性微结构
  • 批准号:
    1703873
  • 财政年份:
    2017
  • 资助金额:
    $ 34.49万
  • 项目类别:
    Continuing Grant
SELF-ASSEMBLY OF ACTIVE NANOPARTICLES
活性纳米颗粒的自组装
  • 批准号:
    1408259
  • 财政年份:
    2014
  • 资助金额:
    $ 34.49万
  • 项目类别:
    Continuing Grant
CAREER: Self-Assembly in Two and Three Dimensions: from Crystal to Surface Design and Back
职业:二维和三维自组装:从晶体到表面设计再到背面
  • 批准号:
    0846426
  • 财政年份:
    2009
  • 资助金额:
    $ 34.49万
  • 项目类别:
    Standard Grant

相似国自然基金

超低温下TiZrHfNb难熔高熵合金强塑性双增机制研究
  • 批准号:
    52301163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CoCrNi基中熵和高熵合金的化学短程和中程有序及其对力学性能调控研究
  • 批准号:
    52301017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高熵超弹性Elinvar合金的设计开发及其机理研究
  • 批准号:
    52301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
  • 批准号:
    52371070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
层状高熵金属氧化物正极材料的组分调控与储钠机制及其载流子输运特性
  • 批准号:
    52374301
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 34.49万
  • 项目类别:
    Standard Grant
High entropy metal organic frameworks for sustainable hydrogen production
用于可持续制氢的高熵金属有机框架
  • 批准号:
    DP240103230
  • 财政年份:
    2024
  • 资助金额:
    $ 34.49万
  • 项目类别:
    Discovery Projects
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
  • 批准号:
    10678601
  • 财政年份:
    2023
  • 资助金额:
    $ 34.49万
  • 项目类别:
The broken drug supply chain: The impact of COVID-19 on drug shortages and Veteran health
断裂的药品供应链:COVID-19 对药品短缺和退伍军人健康的影响
  • 批准号:
    10637004
  • 财政年份:
    2023
  • 资助金额:
    $ 34.49万
  • 项目类别:
Transport of Momentum and Entropy in Multiphase Flows for Hydrogen Production Processes
制氢过程多相流中动量和熵的传递
  • 批准号:
    577560-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.49万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了