Collaborative Research: CISE: Large: Executing Natural Instructions in Realistic Uncertain Worlds

合作研究:CISE:大型:在现实的不确定世界中执行自然指令

基本信息

  • 批准号:
    2321851
  • 负责人:
  • 金额:
    $ 281.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2028-09-30
  • 项目状态:
    未结题

项目摘要

For robots to fluidly operate as human assistants they must be able to take natural language instructions from humans and act to achieve those instructions in complex, uncertain environments. While there are commodity robots that are physically capable of carrying out a wide variety of useful instructions, current artificial intelligence (AI) frameworks are not able to fully understand and autonomously execute most of those instructions. Rather, current AI techniques for robot instruction following have generally been limited to highly constrained, unrealistic environments and instruction formats that are unnatural, brittle, and rigid. The overarching goal of the project is to study the fundamental AI principles that enable robots to reliably execute natural instructions in realistic, uncertain worlds. The project has the potential to dramatically increase the physical labor available to society, without increasing the amount of human labor, by enabling typical human workers to direct semi-automated robots for a multitude of mundane tasks. This will only be possible if the machines are easily instructable in natural environments by humans who only require minimal specialized training. This envisioned labor multiplier is extremely relevant given the need for increased capacity to build physical infrastructure in the US. This includes, for example, new and upgraded public infrastructure such as bridges and energy systems, as well as efficient construction of affordable housing. These same advances will also result in broader impacts to other parts of the economy, such as logistics, healthcare, household assistants. The project will also contribute to education and outreach through K-12 initiatives, undergraduate research experiences, and recruiting of underrepresented graduate student talent.The project will design and develop a novel integrated framework for embodied AI agents that is comprised of synergistic advances in computer vision, language understanding, world modeling, planning, and control. The framework will evolve over a staged plan of increasing capabilities, starting with step-by-step instruction execution and progressing to executing general types of goal-oriented instructions. The research will test and demonstrate the framework in both physically-realistic simulation environments and real-world environments using commodity robots. In addition, user studies will be conducted at each capability stage to focus the work toward end-user utility. Central to the framework is a new knowledge structure for spatio-temporal scenes, the multi-modal entity map (MEM), which is updated based on vision and language and used for both planning and skill execution. The research will study new ideas in 3D vision and language understanding for continually maintaining the MEM based on realistic inputs in a way that captures uncertainty in the environment. The project will also study a new approach to low-level full-body control for robot skills, inspired by recent successes in language modeling, that facilitates both modular skill learning and knowledge sharing. Finally, the project will advance automated planning capabilities by studying new ideas for learning dynamics models over the MEMs, which are used by a novel approach to high-level skill planning based on dynamics-conditioned language models. Importantly all of these innovations will be developed in a synchronized way to allow for rigorous testing and demonstration of the integrated framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了使机器人能够像人类助手一样流畅地操作,它们必须能够接受人类的自然语言指令,并在复杂、不确定的环境中采取行动以实现这些指令。虽然商用机器人在物理上能够执行各种有用的指令,但当前的人工智能 (AI) 框架无法完全理解并自主执行大部分指令。相反,当前用于机器人指令跟踪的人工智能技术通常仅限于高度受限、不切实际的环境和不自然、脆弱且僵化的指令格式。该项目的总体目标是研究人工智能的基本原理,使机器人能够在现实、不确定的世界中可靠地执行自然指令。该项目有可能在不增加人类劳动力数量的情况下大幅增加社会可用的体力劳动,让典型的人类工人能够指挥半自动化机器人完成大量平凡的任务。只有当机器能够在自然环境中由人类轻松指导且只需要最少的专业培训时,这才有可能实现。考虑到美国需要增加建设有形基础设施的能力,这一设想的劳动力乘数极为重要。例如,这包括桥梁和能源系统等新建和升级的公共基础设施,以及经济适用房的高效建设。这些进步还将对经济的其他领域产生更广泛的影响,例如物流、医疗保健、家庭助理。该项目还将通过 K-12 计划、本科生研究经验以及招募代表性不足的研究生人才,为教育和推广做出贡献。该项目将为具体人工智能代理设计和开发一个新颖的集成框架,该框架由计算机视觉领域的协同进步组成、语言理解、世界建模、规划和控制。该框架将按照增强功能的分阶段计划不断发展,从逐步指令执行开始,逐步发展到执行一般类型的面向目标的指令。该研究将使用商用机器人在物理真实的模拟环境和现实环境中测试和演示该框架。此外,将在每个能力阶段进行用户研究,以将工作重点放在最终用户效用上。该框架的核心是时空场景的新知识结构,即多模态实体图(MEM),它基于视觉和语言进行更新,用于规划和技能执行。该研究将研究 3D 视觉和语言理解方面的新想法,以便以捕获环境不确定性的方式持续维护基于现实输入的 MEM。该项目还将研究一种新的机器人技能低级全身控制方法,其灵感来自于最近在语言建模方面取得的成功,该方法有助于模块化技能学习和知识共享。最后,该项目将通过研究 MEM 上学习动态模型的新思路来提高自动化规划能力,基于动态条件语言模型的高级技能规划新方法将使用这些新思路。重要的是,所有这些创新都将以同步方式开发,以便对集成框架进行严格的测试和演示。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Fern其他文献

Out-of-Distribution Dynamics Detection: RL-Relevant Benchmarks and Results
分布外动态检测:RL 相关基准和结果
  • DOI:
  • 发表时间:
    2021-07-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamad H. Danesh;Alan Fern
  • 通讯作者:
    Alan Fern
Lower Bounding Klondike Solitaire with Monte-Carlo Planning
蒙特卡洛规划下界克朗代克纸牌
A PENALTY‐LOGIC SIMPLE‐TRANSITION MODEL FOR STRUCTURED SEQUENCES
结构化序列的惩罚——逻辑简单——转换模型
  • DOI:
    10.1111/j.1467-8640.2009.00346.x
  • 发表时间:
    2009-11-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Alan Fern
  • 通讯作者:
    Alan Fern
Revisiting Output Coding for Sequential Supervised Learning
重新审视顺序监督学习的输出编码
  • DOI:
  • 发表时间:
    2007-01-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guohua Hao;Alan Fern
  • 通讯作者:
    Alan Fern
Incorporating Domain Models into Bayesian Optimization for RL
将域模型纳入强化学习的贝叶斯优化中
  • DOI:
    10.1007/978-3-642-15939-8_30
  • 发表时间:
    2010-09-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aaron Wilson;Alan Fern;Prasad Tadepalli
  • 通讯作者:
    Prasad Tadepalli

Alan Fern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Fern', 18)}}的其他基金

Student Support for the 2020 International Conference on Automated Planning and Scheduling
2020 年自动规划与调度国际会议的学生支持
  • 批准号:
    2017913
  • 财政年份:
    2020
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
S&AS:INT:Learning and Planning for Dynamic Locomotion
S
  • 批准号:
    1849343
  • 财政年份:
    2019
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
RI: Small: Speedup Learning for Online Planning Under Uncertainty
RI:小:加速不确定性下在线规划的学习
  • 批准号:
    1619433
  • 财政年份:
    2016
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
II-EN: Software Tools for Monte-Carlo Optimization
II-EN:蒙特卡罗优化软件工具
  • 批准号:
    1406049
  • 财政年份:
    2014
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
RI: Small: Automated Planning of Experiments for Design Optimization
RI:小型:自动规划实验以优化设计
  • 批准号:
    1320943
  • 财政年份:
    2013
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Continuing Grant
Student Poster Program and Travel Scholarships for International Conference on Machine Learning (ICML) 2010; Haifa, Israel
2010 年国际机器学习会议 (ICML) 学生海报计划和旅行奖学金;
  • 批准号:
    1031917
  • 财政年份:
    2010
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Solving Stochastic Planning Problems Through Principled Determinization
RI:媒介:协作研究:通过原则确定解决随机规划问题
  • 批准号:
    0905678
  • 财政年份:
    2009
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
Adaptation-Based Programming
基于适应的编程
  • 批准号:
    0820286
  • 财政年份:
    2008
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
CAREER: Penalty Logic for Structured Machine Learning
职业:结构化机器学习的惩罚逻辑
  • 批准号:
    0546867
  • 财政年份:
    2006
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
  • 批准号:
    2318657
  • 财政年份:
    2023
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318662
  • 财政年份:
    2023
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318663
  • 财政年份:
    2023
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321531
  • 财政年份:
    2023
  • 资助金额:
    $ 281.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了