Real-Time Control Co-Design for Reconfigurable Energy-Harvesting Systems

可重构能量收集系统的实时控制协同设计

基本信息

项目摘要

This grant will fund research that enables renewable energy generation systems, such as wind turbines and kites, to operate optimally over a wide range of environmental conditions, thereby promoting the progress of science and advancing the national prosperity. Environmental variability poses operational challenges for energy-harvesting systems that can be addressed using real-time reconfigurability: simultaneous, on-the-fly changes to both the physical mechanism (plant) and the system control to ensure sustained high efficiency. Offline design methodologies can select optimal plant and control parameters for fixed conditions. No such methodology exists, however, for real-time operation in response to environmental variability and uncertainty, due to critical differences in time scale and effort required to modify plant parameters and control parameters, respectively. This project will fill this knowledge gap by developing an innovative algorithmic framework that accounts for such differences in real-time operation and will further quantify the computational requirements to make real-time reconfigurability worth additional costs and complexity. The PI will leverage engagement with the International Energy Agency Task on Airborne Wind Energy to organize annual workshops on the use of reconfigurable energy-harvesting-system models and open-source software tools created in this project. Student engagement with renewable energy technology will be promoted by implementing a “Physics of Kites” workshop in existing K-12 programming.This research aims to develop the foundations of a receding horizon co-design framework for real-time plant reconfigurability while also addressing fundamental distinctions between plant and control parameters. It accomplishes this outcome by fusing notions from nested co-design and multi-rate hierarchical model predictive control, addressing critical knowledge gaps that arise due to the simultaneous need to (i) consider an economic (rather than tracking) formulation at both levels of the hierarchy, (ii) incorporate surrogate models for tractability, and (iii) consider environmental stochasticity. Specifically, a multi-rate architecture will be investigated whereby a low-order surrogate model is used by the upper-level plant optimization to approximately capture the anticipated behavior of the lower-level control system optimization. An interconnected error system model and small gain framework will be used to address questions of convergence and efficiency under different rates of environmental parameter variation. Finally, recursive Gaussian Process modeling will be used to characterize environmental uncertainty, while reformulating deterministic objective functions into statistical ones, introducing chance constraints, and assessing theoretical properties in a probabilistic sense. The framework will be evaluated through an extensive simulation and scaled experimental validation campaign on an energy-harvesting underwater kite with real-time morphing capability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将资助研究,使风力涡轮机和风筝等可再生能源发电系统能够在各种环境条件下实现最佳运行,从而促进科学进步并促进国家繁荣。可以使用实时可重构性来解决的收割系统:对物理机制(设备)和系统控制进行同步、动态更改,以确保持续的高效率。离线设计方法可以选择最佳的设备和固定控制参数。没有这样的方法论。然而,由于修改工厂参数和控制参数所需的时间尺度和工作量存在显着差异,因此对于响应环境变化和不确定性的实时操作来说,该项目将通过开发创新的算法框架来填补这一知识空白。解释了实时操作中的这种差异,并将量化计算要求,使实时可重构性值得额外的成本和复杂性。PI 将利用与国际能源机构机载风能任务的合作,组织更多关于机载风能的年度研讨会。使用可重构的该项目中创建的能量收集系统模型和开源软件工具将通过在现有的 K-12 编程中实施“风筝物理学”研讨会来促进学生对可再生能源技术的参与。这项研究旨在为以下方面奠定基础:它是一个用于实时工厂可重构性的后退协同设计框架,同时还解决了工厂和控制参数之间的基本区别,它通过融合嵌套协同设计和多速率分层模型预测控制的概念来实现这一结果,解决了关键的知识差距。由于同时需要(i)考虑层次结构的两个级别的经济(而不是跟踪)公式,(ii)合并可处理性的替代模型,以及(iii)考虑环境随机性,具体来说,是多速率架构。将进行研究,其中上层工厂优化使用低阶代理模型来近似捕获下层控制系统优化的预期行为,将使用互连误差系统模型和小增益框架来解决以下问题。收敛和最后,将使用递归高斯过程模型来表征环境不确定性,同时将确定性目标函数重新表述为统计目标函数,引入机会约束,并在概率意义上评估理论属性。通过对具有实时变形能力的能量收集水下风筝进行广泛的模拟和规模化实验验证活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Vermillion其他文献

Persistent Mission Planning of an Energy-Harvesting Autonomous Underwater Vehicle for Gulf Stream Characterization
用于湾流表征的能量采集自主水下航行器的持续任务规划
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Eclares:能量感知、清晰度驱动的遍历搜索
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaleb Ben Naveed;Devansh R. Agrawal;Christopher Vermillion;Dimitra Panagou
  • 通讯作者:
    Dimitra Panagou
Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite
基于迭代学习的水下风筝飞行轨迹优化器的实验验证
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    James Reed;Kartik Naik;Andrew Abney;Dillon Herbert;Jacob Fine;Ashwin Vadlamannati;James Morris;Trip Taylor;Michael Muglia;Kenneth Granlund;M. Bryant;Christopher Vermillion
  • 通讯作者:
    Christopher Vermillion

Christopher Vermillion的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Vermillion', 18)}}的其他基金

Persistent Mission Planning and Control for Renewably Powered Robotic Systems
可再生能源机器人系统的持续任务规划和控制
  • 批准号:
    2012103
  • 财政年份:
    2020
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop: Integrated Design of Active Dynamic Systems (IDADS); Champaign, Illinois
合作研究:研讨会:主动动态系统集成设计(IDADS);
  • 批准号:
    1935879
  • 财政年份:
    2019
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
  • 批准号:
    1914495
  • 财政年份:
    2018
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
  • 批准号:
    1913735
  • 财政年份:
    2018
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
  • 批准号:
    1913726
  • 财政年份:
    2018
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
  • 批准号:
    1711579
  • 财政年份:
    2017
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
  • 批准号:
    1727779
  • 财政年份:
    2017
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
  • 批准号:
    1538369
  • 财政年份:
    2015
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
  • 批准号:
    1453912
  • 财政年份:
    2015
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
Altitude Control for Optimal Performance of Tethered Wind Energy Systems
用于系留风能系统最佳性能的高度控制
  • 批准号:
    1437296
  • 财政年份:
    2014
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant

相似国自然基金

状态/输出约束下高阶非线性系统的有限时间控制设计与分析
  • 批准号:
    62303263
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机干扰作用下轮毂电机驱动电动汽车悬架系统有限时间稳定与容错控制
  • 批准号:
    62363013
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
模型与数据双驱动的新能源电力系统电压稳定多时间尺度优化控制方法研究
  • 批准号:
    52377096
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
预设时间下异构多智能体系统的安全协同控制研究
  • 批准号:
    62303202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多维连续变体飞行器在线动态协调轨迹规划与预设性能/收敛时间控制
  • 批准号:
    62373124
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

機械学習のアプローチによるPatient-based Real-time Quality Controlの開発
使用机器学习方法开发基于患者的实时质量控制
  • 批准号:
    24K10577
  • 财政年份:
    2024
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins
职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化
  • 批准号:
    2338627
  • 财政年份:
    2024
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Continuing Grant
Activating lazy stormwater wetlands through real time monitoring & control
通过实时监控激活懒惰的雨水湿地
  • 批准号:
    LP210200490
  • 财政年份:
    2023
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Linkage Projects
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
  • 批准号:
    2246022
  • 财政年份:
    2023
  • 资助金额:
    $ 44.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了