Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization

合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位

基本信息

  • 批准号:
    2321480
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

The sensory and motor functions of the nervous system depend on the establishment of precise connections between different types of neurons and target cells during development. In the developing nervous systems of both vertebrates and invertebrates, neurons express a wide diversity of cell adhesion molecules, which mediate interactions that are essential for specifying target selection and connectivity patterns. This proposal will study the molecular control of circuit development through a combination of genetic and biophysical approaches in which binding affinities and cell surface localization of cell adhesion molecules are manipulated and their effects on neural circuit formation are studied in the larva fruit fly. The proposed research will have a significant impact on multiple research fields due to the generality of the phenomena to be studied. Moreover, integrating computational and structural biology with developmental neuroscience is likely to stimulate similar collaborative efforts in these fields. In terms of training, students and postdocs working on this project will develop a deep appreciation of both computational and experimental work, thus providing exemplars for broadly trained interdisciplinary scientists. Women scientists constitute over 50% of the participating groups. The research program includes training of high school and undergraduate students, many of whom are from underrepresented minorities in sciences, through summer internships. The team will continue partnering with a network of high schools across lower-income districts and minority serving colleges, and run the DREAM-High cloud computing course for high school students that increases student awareness of and interest in biological sciences, empowers students to adopt scientific reasoning and critical-thinking skills, and inspires students to seek post-secondary education in related fields.This project will investigate the effects of binding affinity and cell surface availability of cell adhesion molecules (CAMs) on circuit formation in Drosophila. The study will focus on the larval neuromuscular system and mushroom body development. At the molecular level, the focus will be on two interacting groups of CAMs, the Dprs (Defective in Proboscis extension Response) and the DIPs (Dpr Interacting Proteins). The choice of these proteins and anatomical structures is based on the deep understanding of the biophysical properties of DIPs and Dprs that has emerged over the past few years, and on the demonstration of their crucial roles in the development of these anatomical structures. Here, by examining various Dpr/DIP cognate pairs in different neurodevelopmental settings, the findings should deepen currently limited knowledge of the in vivo consequences of altering avidity using both changes in binding affinities and in expression levels. A particular focus will be on the phenomenon of cis inhibition, whereby interactions between cognate binding partners on the same cell compete with trans binding to partners on apposed cells. The underlying hypothesis is that cis-inhibition is a key regulatory mechanism in neural development.This project is jointly funded by the Neural Systems Cluster in IOS and the Molecular Biophysics Cluster in MCB of the Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经系统的感觉和运动功能取决于发育过程中不同类型神经元和靶细胞之间精确连接的建立。在脊椎动物和无脊椎动物发育中的神经系统中,神经元表达多种细胞粘附分子,这些细胞粘附分子介导对于指定目标选择和连接模式至关重要的相互作用。该提案将通过遗传和生物物理方法相结合来研究神经回路发育的分子控制,其中操纵细胞粘附分子的结合亲和力和细胞表面定位,并在幼虫果蝇中研究它们对神经回路形成的影响。由于所研究现象的普遍性,所提出的研究将对多个研究领域产生重大影响。此外,将计算和结构生物学与发育神经科学相结合可能会刺激这些领域类似的合作努力。在培训方面,从事该项目的学生和博士后将对计算和实验工作产生深刻的理解,从而为受过广泛培训的跨学科科学家提供范例。女性科学家占参与群体的50%以上。该研究计划包括通过暑期实习对高中生和本科生进行培训,其中许多人来自科学领域代表性不足的少数群体。该团队将继续与低收入地区的高中网络和少数族裔服务的大学合作,为高中生开设 DREAM-High 云计算课程,以提高学生对生物科学的认识和兴趣,使学生能够采用科学方法推理和批判性思维能力,并激励学生寻求相关领域的高等教育。该项目将研究细胞粘附分子(CAM)的结合亲和力和细胞表面可用性对果蝇回路形成的影响。该研究将重点关注幼虫神经肌肉系统和蘑菇体发育。在分子水平上,重点将放在两个相互作用的 CAM 组上:Dprs(长鼻延伸反应缺陷)和 DIPs(Dpr 相互作用蛋白)。这些蛋白质和解剖结构的选择是基于对过去几年出现的 DIP 和 Dpr 生物物理特性的深入理解,以及它们在这些解剖结构发展中的关键作用的证明。在这里,通过检查不同神经发育环境中的各种 Dpr/DIP 同源对,这些发现应该加深目前对利用结合亲和力和表达水平的变化来改变亲和力的体内后果的有限认识。特别关注的是顺式抑制现象,即同一细胞上的同源结合伴侣之间的相互作用与反式结合到并列细胞上的伴侣竞争。基本假设是顺式抑制是神经发育的关键调节机制。该项目由生物科学理事会 IOS 神经系统集群和 MCB 分子生物物理学集群联合资助。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barry Honig其他文献

The electrostatic contribution to the B to Z transition of DNA.
静电对 DNA B 到 Z 转变的贡献。
  • DOI:
    10.1021/bi951463y
  • 发表时间:
    1996-01-30
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    V. Misra;Barry Honig
  • 通讯作者:
    Barry Honig
Model-building of neurohypophyseal hormones.
神经垂体激素的模型构建。
  • DOI:
  • 发表时间:
    1973
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Barry Honig;Barry Honig;E. A. Kabat;E. A. Kabat;Lou Katz;Lou Katz;Cyrus Levinthal;Cyrus Levinthal;Tai Te Wu;Tai Te Wu
  • 通讯作者:
    Tai Te Wu
Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations.
使用自由能扰动计算稳健预测蛋白质-蛋白质复合物突变的相对结合能。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Jared M. Sampson;Daniel A. Cannon;Jianxin Duan;Jordan C. K. Epstein;Alina P. Sergeeva;Phinikoula S. Katsamba;S. Mannepalli;Fabiana A. Bahna;Hélène Adihou;Stéphanie M. Guéret;Ranganath Gopalakrishnan;Stefan Geschwindner;D. Gareth Rees;Anna Sigurdardottir;Trevor Wilkinson;Roger B. Dodd;L. De Maria;Juan Carlos Mobarec;Lawrence Shapiro;Barry Honig;Andrew Buchanan;R. Friesner;Lingle Wang
  • 通讯作者:
    Lingle Wang
ZEPPI: proteome-scale sequence-based evaluation of protein-protein interaction models
ZEPPI:基于蛋白质组规模序列的蛋白质-蛋白质相互作用模型评估
  • DOI:
    10.21203/rs.3.rs-3289791/v1
  • 发表时间:
    2023-09-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiqing Zhao;Diana Murray;Donald Petrey;Barry Honig
  • 通讯作者:
    Barry Honig
Protocadherin Family: Diversity, Structure, and Function This Review Comes from a Themed Issue on Cell to Cell Contact and Extracellular Matrix Edited Diversity and Classification Protein Structure and Adhesive Property
原钙粘蛋白家族:多样性、结构和功能这篇评论来自细胞间接触和细胞外基质编辑多样性和分类蛋白质结构和粘附特性的主题问题
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Morishita;T. Yagi;Yagi;Takeshi;Lawrence Shapiro;Barry Honig
  • 通讯作者:
    Barry Honig

Barry Honig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barry Honig', 18)}}的其他基金

Molecular Mechanisms in Adhesion Protein Mediated Neuron-Neuron Recognition
粘附蛋白介导的神经元-神经元识别的分子机制
  • 批准号:
    1914542
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
The Molecular Basis of Cadherin-Mediated Cell Adhesion
钙粘蛋白介导的细胞粘附的分子基础
  • 批准号:
    1412472
  • 财政年份:
    2014
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
The Molecular Basis of Cadherin-Mediated Cell Adhesion
钙粘蛋白介导的细胞粘附的分子基础
  • 批准号:
    0918535
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Membrane Proteins
膜蛋白的理论研究
  • 批准号:
    0416708
  • 财政年份:
    2004
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Rapid Computational Analysis of Biomolecular Properties
生物分子特性的快速计算分析
  • 批准号:
    9904841
  • 财政年份:
    1999
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Membrane Proteins
膜蛋白的理论研究
  • 批准号:
    9808902
  • 财政年份:
    1998
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Rapid Computational Analysis of Biomolecular Properties
生物分子特性的快速计算分析
  • 批准号:
    9601463
  • 财政年份:
    1996
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Membrane Proteins
膜蛋白的理论研究
  • 批准号:
    9304127
  • 财政年份:
    1993
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Rapid Computational Analysis of Biomolecular Properties
生物分子特性的快速计算分析
  • 批准号:
    9207256
  • 财政年份:
    1992
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Modeling Facility for Molecular Biology
分子生物学建模设施
  • 批准号:
    8720229
  • 财政年份:
    1989
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
circ100783作为miR-34b分子海绵在铅暴露海马SNARE 复合体形成和突触囊泡释放中的机制研究
  • 批准号:
    81872577
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
美国国家科学基金会组织与管理的法律制度研究
  • 批准号:
    L0822107
  • 批准年份:
    2008
  • 资助金额:
    9.5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了