Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
基本信息
- 批准号:2321486
- 负责人:
- 金额:$ 48.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Lithium-ion batteries will play an essential role in the transition to a sustainable economy by enabling the adoption of electric vehicles and renewable energy sources. However, as Lithium-ion batteries production grows rapidly, there are serious supply chain risks associated with the use of critical minerals (e.g., nickel, cobalt, graphite), which may restrict domestic production. Meanwhile, continuous improvements to lithium-ion battery performance – particularly energy density – are needed to meet the demands of commercial and military applications. To that end, it is imperative to develop battery anodes with higher lithium-storage capacity and lower cost than traditional graphite anodes. One promising, yet largely unexplored, alternative to graphite is aluminum (Al) foil, which can increase battery energy density by up to 40%, while improving safety, fast charging capability, and cost. However, research on Al foil anodes is in its infancy, and the fundamental mechanisms underlying the structural transformations of Al foil anodes during electrochemical (de)alloying must be uncovered to improve their poor cycle life. The fundamental research project will fill this knowledge gap through an interdisciplinary research approach that integrates materials science and electrochemical engineering. The project team will work with a local public school and the Ysleta Del Sur Pueblo reservation students and provide outreach on topics of the importance of clean energy technologies and opportunities in STEM careers. Aluminum foil anodes undergo fundamental changes in microstructure during battery formation (i.e., the first cycle), which largely control the electrochemical performance in subsequent cycles. It is hypothesized that the same mechanochemical processes, which cause dramatic structural changes during formation, when repeated continuously, are responsible for the rapid capacity loss during cycling. The goal of this research project is to understand: (i) how the structure and composition of the pristine Al foil anode, along with the kinetics of nucleation, phase transition, and solid-state diffusion, control the structural transformations during formation, and (ii) how the foil microstructure resulting from formation, and its evolution during cycling, control the failure modes of diffusional trapping and mechanical degradation. The dynamic electrochemical kinetics of these processes will be evaluated simultaneously with cycle life by conducting operando impedance spectroscopy in lithium iron phosphate full cells. An extensive suite of materials characterization techniques will be employed at various stages during formation and extended cycling to understand the mechanisms of structural transformation and identify the associated failure modes. These techniques will be used to interrogate Al foil anodes with diverse composition and microstructure, ranging from pure Al to nanocomposite foils. The structural transformations during formation will be correlated to operando kinetic measurements to establish quantitative relationships between initial foil structure/composition, electrochemical processing conditions, and the resulting foil microstructure. Finally, by correlating the microstructure after formation to the measured cycle life, and identifying the root causes of failure with advanced post-mortem materials characterization techniques, comprehensive processing-structure-performance relationships will be established to guide rational design of Al foil anodes with improved cycle life. This novel strategy of using the battery formation process as the final step of electrode manufacturing enables control of the microstructure through electrochemical engineering, which will lead to a paradigm shift in the research efforts to develop Al foil anodes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂离子电池将通过推动电动汽车和可再生能源的采用,在向可持续经济转型中发挥重要作用。然而,随着锂离子电池产量的快速增长,锂离子电池的使用存在严重的供应链风险。关键矿物(例如镍、钴、石墨)可能会限制国内生产,同时,需要不断改进锂离子电池的性能,特别是能量密度,以满足商业和军事应用的需求。势在必行开发比传统石墨阳极具有更高锂存储容量和更低成本的电池阳极,铝 (Al) 箔是一种很有前途但尚未开发的石墨替代品,它可以将电池能量密度提高高达 40%,同时提高安全性。然而,对铝箔阳极的研究还处于起步阶段,必须揭示铝箔阳极在电化学(脱)合金过程中结构转变的基本机制。该基础研究项目将通过整合材料科学和电化学工程的跨学科研究方法来填补这一知识空白。该项目团队将与当地公立学校和 Ysleta Del Sur Pueblo 保留地的学生合作,并提供推广服务。清洁能源技术的重要性和 STEM 职业机会的主题在电池形成过程中(即第一个循环),铝箔阳极的微观结构发生了根本性的变化,这在很大程度上控制了后续循环中的电化学性能。机械化学过程会在形成过程中引起剧烈的结构变化,当连续重复时,会导致循环过程中容量的快速损失。该研究项目的目标是了解:(i)原始铝箔阳极的结构和成分是如何变化的。与成核、相变和固态扩散的动力学一起,控制形成过程中的结构转变,以及(ii)形成过程中产生的箔微观结构及其在循环过程中的演变如何控制扩散捕获和机械的失效模式通过在磷酸铁锂全电池中进行操作阻抗谱,将在形成和延长循环的各个阶段采用广泛的材料表征技术来同时评估这些过程的动态电化学动力学,以了解其机制。这些技术将用于研究具有不同成分和微观结构的铝箔阳极,范围从纯铝箔到纳米复合箔。操作动力学测量,以建立初始箔结构/成分、电化学加工条件和所得箔微观结构之间的关系。最后,通过将形成后的微观结构与测量的循环寿命相关联,并确定先进事后材料失效的根本原因。通过表征技术,建立全面的加工-结构-性能关系,以指导合理设计具有改善循环寿命的铝箔负极。这种利用电池化成过程作为电极制造的最后一步的新策略,可以通过电化学工程控制微观结构。 , 哪个将导致开发铝箔阳极的研究工作发生范式转变。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arumugam Manthiram其他文献
Li/S
锂/硫
- DOI:
10.1002/9783527610426.bard110016 - 发表时间:
2020-03-18 - 期刊:
- 影响因子:0
- 作者:
Sheng‐Heng Chung;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions
氧化钴涂层 N 和 B 掺杂石墨烯空心球作为氧还原和析氧反应的双功能电催化剂
- DOI:
10.1039/c6ta01349j - 发表时间:
2016 - 期刊:
- 影响因子:11.9
- 作者:
Zhongqing Jiang;Zhong-Jie Jiang;Th;avarayan Maiyalagan;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Sodium-based batteries: from critical materials to battery systems
- DOI:
10.1039/c8ta11999f - 发表时间:
2019-03 - 期刊:
- 影响因子:11.9
- 作者:
Fang Li;Zengxi Wei;Arumugam Manthiram;Yuezhan Feng;Jianmin Ma;Liqiang Mai - 通讯作者:
Liqiang Mai
A strategically managed rechargeable battery system with a neutral methyl viologen anolyte and an acidic air-cathode enabled by a mediator-ion solid electrolyte
- DOI:
10.1039/c8se00227d - 发表时间:
2018-05 - 期刊:
- 影响因子:5.6
- 作者:
Xingwen Yu;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Towards more environmentally and socially responsible batteries
打造对环境和社会更负责的电池
- DOI:
10.1039/d0ee02511a - 发表时间:
2020-11-12 - 期刊:
- 影响因子:32.5
- 作者:
Shyam S. Sharma;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Arumugam Manthiram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arumugam Manthiram', 18)}}的其他基金
In-Situ Formation of Ternary Sulfide-rich Interphases for Stabilizing Lithium Deposition in Lithium-sulfur Batteries
原位形成富含三元硫化物的界面相以稳定锂硫电池中的锂沉积
- 批准号:
2011415 - 财政年份:2020
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
MRI: Acquisition of a Nanofabrication and Electron Microscopy System for Materials Research
MRI:采购用于材料研究的纳米加工和电子显微镜系统
- 批准号:
1827608 - 财政年份:2018
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Microwave-Assisted Chemical Insertion for Designing Multivalent-ion Battery Hosts
用于设计多价离子电池主体的微波辅助化学插入
- 批准号:
1709081 - 财政年份:2017
- 资助金额:
$ 48.95万 - 项目类别:
Continuing Grant
MIRT: Exploring Unusual Properties of Transition Metal Oxides
MIRT:探索过渡金属氧化物的不寻常性质
- 批准号:
1122603 - 财政年份:2011
- 资助金额:
$ 48.95万 - 项目类别:
Continuing Grant
Nanostructured Palladium-based Alloy Catalysts for Fuel Cells
用于燃料电池的纳米结构钯基合金催化剂
- 批准号:
0651929 - 财政年份:2007
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Borohydrides as Reducing Agents in the Synthesis of Inorganic Materials
硼氢化物作为无机材料合成中的还原剂
- 批准号:
9401999 - 财政年份:1994
- 资助金额:
$ 48.95万 - 项目类别:
Continuing Grant
Acquisition of a SQUID Magnetometer
获取 SQUID 磁力计
- 批准号:
9109080 - 财政年份:1991
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
相似国自然基金
非线性模型结构性误差的动力学订正方法研究
- 批准号:42375059
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
橡胶木非结构性碳水化合物原位交联改性及梯级保护机制
- 批准号:32371791
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高纬旱区复杂结构性特殊土水敏致灾机理与重大工程灾变防控
- 批准号:42330708
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
结构性软土循环变温热排水固结机理及理论研究
- 批准号:52378356
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
极地航行多因素耦合作用下装备结构性能演化规律及动态可靠性分析方法
- 批准号:52371361
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
- 批准号:
2246991 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
NSF-BSF: Stress-Assisted Structural Phase Transformations and Plasticity in Bicontinuous Nanomaterials
NSF-BSF:双连续纳米材料中的应力辅助结构相变和塑性
- 批准号:
2208681 - 财政年份:2022
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Structural transformations of dementia-related proteins: droplets, gels and amyloids
痴呆相关蛋白质的结构转变:液滴、凝胶和淀粉样蛋白
- 批准号:
10055682 - 财政年份:2020
- 资助金额:
$ 48.95万 - 项目类别:
Elucidating Structural Transformations in MoTe2 for Efficient Optoelectronic Memory
阐明 MoTe2 的结构转变以实现高效光电存储器
- 批准号:
2003325 - 财政年份:2020
- 资助金额:
$ 48.95万 - 项目类别:
Continuing Grant
INFEWS N/P/H2O: Chemical and structural transformations at low solubility magnesium mineral-wastewater interface during struvite formation and growth
INFEWS N/P/H2O:鸟粪石形成和生长过程中低溶解度镁矿物-废水界面的化学和结构转变
- 批准号:
1710120 - 财政年份:2017
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant