Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
基本信息
- 批准号:2320073
- 负责人:
- 金额:$ 37.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports computational research aimed at designing superconducting materials with advanced modeling methods. Superconductors display a unique property of conducting electrical current without any resistance when cooled below a certain critical temperature. Discovery of new materials synthesizable with ambient-pressure techniques and superconducting at high temperatures can impact a wealth of emerging technologies in the areas of energy storage and distribution, medicine, electronics, and transportation.The project will involve a systematic screening of a vast compositional and structural space. The chemical set will include light-weight elements that can form strongly bonded layered frameworks and different metals that can make the covalent frameworks stable and superconducting. In order to study and tune the key properties of candidate materials, the team will add new capabilities to software packages developed in the PIs’ groups. The new features will enable investigation of large-scale phenomena using artificial intelligence approaches and evaluation of the complex materials’ superconducting properties with cutting-edge electronic structure methods.The educational activities will focus on training graduate and undergraduate students in computational materials science and high-performance computing. The team will also participate in outreach activities for K-12 students to help attract a new generation of scientists from underrepresented groups into the Science, Technology, Engineering, and Mathematics disciplines. All new computational features will be made freely available to reach a wider community of physicists, chemists, and materials scientists.TECHNICAL SUMMARYThis award supports a collaborative project on the prediction of high-temperature superconductors that can be synthesized at ambient pressure. The team’s exploratory work has identified layered metal borocarbides as a promising materials class to host new synthesizable compounds with targeted electronic and vibrational properties. In contrast to searches for ground state crystal structures that can be performed with a variety of existing algorithms, identification of temperature- and composition-dependent synthesis routes yielding metastable materials is a far more difficult task. The team will employ a combination of ab initio methods and machine learning interatomic potentials to explore complex kinetics-protected pathways that may lead to the desired metastable configurations. The large size and possible disorder of the resulting structures will make the accurate description of their superconducting properties a considerable challenge. The PIs will introduce new descriptors of the electron-phonon coupling and new capabilities within the anisotropic Migdal-Eliashberg framework to enable a high-throughput evaluation of the candidate materials’ superconducting critical temperatures.The new features in the PIs’ electronic structure software packages (MAISE and EPW) will be disseminated under the open-source GNU General Public License via well-established platforms and presented at workshops to ensure that the scientific community will benefit from these developments in a timely fashion. The PIs will also train (under)graduate students in computational materials physics and high-performance computing as well as introduce K-12 students to present-day materials research through interactive demonstrations organized with the help of the Physics Outreach Program at Binghamton University. Aimed at fostering the young generation’s interest in STEM disciplines, these efforts will contribute to the development of a skilled workforce for advancing cyberinfrastructure and computational materials research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持旨在通过先进建模方法设计超导材料的计算研究,超导体在冷却到低于某个临界温度时表现出传导电流的独特特性,并且发现了可通过环境压力技术合成和高温超导的新材料。温度可能会影响能源存储和分配、医学、电子和运输领域的大量新兴技术。该项目将涉及对巨大的成分和系统结构空间的筛选。化学组将包括可以牢固形成键合层状框架的轻质元素和可以使共价框架稳定和超导的不同金属。为了研究和调整候选材料的关键特性,该团队将为在该项目中开发的软件包添加新功能。 PI 小组将能够利用人工智能方法研究大规模现象,并利用尖端电子结构方法评估复杂材料的超导特性。教育活动将侧重于对研究生和本科生进行计算材料方面的培训。科学和该团队还将参加针对 K-12 学生的外展活动,以帮助吸引来自弱势群体的新一代科学家进入科学、技术、工程和数学学科。所有新的计算功能都将免费提供。接触更广泛的物理学家、化学家和材料科学家社区。技术摘要该奖项支持该团队的一个关于预测可在环境压力下合成的高温超导体的合作项目。探索性工作已确定层状金属硼碳化物是一种有前途的材料类别,可以容纳具有目标电子和振动特性的新型合成化合物,与可以使用各种现有算法进行的基态晶体结构的搜索、温度和成分的识别相反。产生亚稳态材料的依赖合成路线是一项更加困难的任务,该团队将采用从头计算方法和机器学习原子间势的组合来探索可能导致所需亚稳态的复杂动力学保护途径。由此产生的结构的大尺寸和可能的无序性将使对其超导特性的准确描述成为一个相当大的挑战,PI将在各向异性Migdal-Eliashberg框架中引入新的电子-声子耦合描述符和新功能。对候选材料的超导临界温度进行高通量评估。PI的电子结构软件包(MAISE和EPW)中的新功能将在开源GNU General Public中传播通过完善的平台获得许可并在研讨会上展示,以确保科学界及时从这些发展中受益。PI 还将对研究生进行计算材料物理和高性能计算方面的培训,并介绍 K。 -12 名学生通过在宾厄姆顿大学物理推广计划的帮助下组织的互动演示来了解当今的材料研究,这些努力旨在培养年轻一代对 STEM 学科的兴趣,这些努力将有助于培养一支技术精湛的劳动力队伍,以促进进步。网络基础设施和材料研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得计算支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey Kolmogorov其他文献
Alexey Kolmogorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexey Kolmogorov', 18)}}的其他基金
Theory-Guided Discovery of Tin-Based Materials
锡基材料的理论引导发现
- 批准号:
1821815 - 财政年份:2018
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
A Machine Learning Framework for Acceleration of Materials Prediction
用于加速材料预测的机器学习框架
- 批准号:
1410514 - 财政年份:2014
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
相似国自然基金
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚合物囊泡靶向骨组织递送mRNA编码抗骨硬化蛋白单链抗体治疗骨质疏松的研究
- 批准号:82372442
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CDK4/6抑制剂通过IFN/JAK/STAT1信号轴增强PD-1抗体抗肝细胞癌疗效的机制研究
- 批准号:82373313
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
P29单克隆抗体的3-羟基丁酰化修饰对其稳定性影响及提升抗泡型包虫病作用的研究
- 批准号:82360402
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
纳米抗体工程化细菌外膜囊泡联合光免疫制剂激活cGAS-STING通路诱导大肠癌抗肿瘤免疫的机制研究
- 批准号:82373775
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
- 批准号:
2320074 - 财政年份:2023
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
EAGER:SUPER: Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
EAGER:SUPER:合作研究:掺杂共价键超导体的从头工程
- 批准号:
2132586 - 财政年份:2021
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
CDS&E: Collaborative Research: Designing New Zintl Phases with Motif-based Learning and Ab Initio Methods
CDS
- 批准号:
2102406 - 财政年份:2021
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
CDS&E: Collaborative Research: Designing New Zintl Phases with Motif-based Deep Learning and Ab Initio Methods
CDS
- 批准号:
2102409 - 财政年份:2021
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant
EAGER: SUPER: Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
EAGER:SUPER:合作研究:掺杂共价键超导体的从头工程
- 批准号:
2132589 - 财政年份:2021
- 资助金额:
$ 37.8万 - 项目类别:
Continuing Grant