Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
基本信息
- 批准号:2319619
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern computers have revolutionized a wide range of applications that require fast, large-scale arithmetic operations. However, today’s computers still perform poorly on ‘cognitive’ tasks – tasks that require knowledge building, learning from past experiences, and anticipating the future. This project aims to design a new class of computer chips – ‘Cognitive Computing Machines (C2M)’ – by leveraging advances in recent understanding of how the brain represents and computes information and the crucial insight to map complex signal routing, characteristic of brain structures, onto three-dimensional integrated chips. The inspiration for the project is the hippocampus, a brain structure known to be critical for performing these cognitive tasks. The project will model and quantify key information processing steps in the hippocampus. These key hippocampal functions will then be embedded on to solid-state computing chips through state-of-the-art hardware design techniques. A hippocampal-aware, hardware-aware, algorithmic framework will augment the chip design efforts to enable online learning and decision-making in resource constrained environments. The project has potential disruptive applications in the field of robotics and autonomous systems spanning industrial, consumer and defense sectors. Each participating investigator and institution are committed to support a wide range of training and mentoring programs, with a focus on students from groups underrepresented in science. Trainees involved in the project will receive rare cross-disciplinary training in neuroscience and engineering, providing a foundation for a wide variety of career trajectories. Further, the participating laboratories will disseminate project outcomes through scientific articles, public and conference presentations, and other outreach tools including project websites and joint curricular activities.The cognitive ability to use information from individual events to build knowledge and make context-appropriate decisions is integral to daily life in humans but poses a significant challenge for hardware and software systems. Decades of research has indicated that a brain structure called the hippocampus plays a crucial role in enabling context-appropriate decision-making. The goal of this project is to design a new class of computer chips (Cognitive Computing Machines or C2M) inspired from the cognitive functions of the hippocampus. The project leverages three significant and timely developments: (1) three-dimensional integration of chips, enabling novel routing techniques for spatio-temporal signals, (2) processing-in-memory technology, capable of complex dynamic analog on-chip processing, and (3) advances in the understanding of hippocampal mechanisms and dynamics supporting learning, memory, and decisions. Further, the designed in silico C2M will be augmented with rapid and robust decision-making through novel hippocampus-aware, hardware-aware learning algorithm for range of cognitive applications. The transformative potential of the project emerges from research conducted at three different levels of abstractions (threads) and directed towards a common goal: (1) neuroscience abstraction, as in identifying and answering key questions about organizational and functional principles of hippocampus; (2) hardware abstraction, as in functionally mimicking hippocampal computing attributes in 3D integrated circuits in a technology-friendly manner; and (3) algorithm abstraction, as in incorporating event-based predictions from the hippocampus-inspired chip with knowledge-based predictions for rapid and robust learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机已经彻底改变了需要快速、大规模算术运算的广泛应用,但是,今天的计算机在“认知”任务(需要构建知识、学习过去的经验和预测未来的任务)方面仍然表现不佳。旨在设计一种新型计算机芯片——“认知计算机器(C2M)”——利用最近对大脑如何表示和计算信息的理解的进展以及将复杂信号路由、大脑结构特征映射到该项目的灵感来自于海马体,这是一种对于执行这些认知任务至关重要的大脑结构,该项目将对海马体中的关键信息处理步骤进行建模和量化,然后将这些关键的海马体功能嵌入其中。通过最先进的硬件设计技术来实现固态计算芯片,海马感知、硬件感知的算法框架将增强芯片设计工作,从而在资源有限的环境中实现在线学习和决策。有每个参与的研究人员和机构都致力于支持广泛的颠覆性培训和指导计划,重点关注来自科学领域代表性不足的群体的学生。该项目的参与者将接受神经科学和工程学方面罕见的跨学科培训,为各种职业轨迹奠定基础。此外,参与实验室将通过科学文章、公开和会议演讲以及包括项目在内的其他推广工具来传播项目成果。网站和联合课程活动。使用来自个体事件的信息来构建知识并做出适合情境的决策的认知能力是人类日常生活不可或缺的一部分,但对硬件和软件系统提出了重大挑战。数十年的研究表明,称为“大脑结构”的大脑结构。海马体在实现适合情境的决策方面发挥着至关重要的作用。该项目的目标是设计一种受大脑认知功能启发的新型计算机芯片(认知计算机或 C2M)。该项目利用了三个重要且及时的进展:(1) 芯片的三维集成,为时空信号提供了新颖的路由技术,(2) 内存处理技术,能够进行复杂的动态模拟片上处理。 (3) 对支持学习、记忆和决策的海马机制和动力学的理解取得进展。此外,通过新颖的海马感知、快速、稳健的决策,将增强计算机设计的 C2M。该项目的变革潜力来自于在三个不同抽象层次(线程)进行的研究,并针对一个共同目标:(1)神经科学抽象,如识别和回答关键问题。关于海马体的组织和功能原理;(2) 硬件抽象,例如以技术友好的方式在功能上模仿 3D 集成电路中的海马计算属性;以及 (3) 算法抽象,例如结合基于事件的方法该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryam Parsa其他文献
PABO: Pseudo Agent-Based Multi-Objective Bayesian Hyperparameter Optimization for Efficient Neural Accelerator Design
PABO:基于伪代理的多目标贝叶斯超参数优化,用于高效神经加速器设计
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Maryam Parsa;Aayush Ankit;A. Ziabari;K. Roy - 通讯作者:
K. Roy
Automated Design of Neuromorphic Networks for Scientific Applications at the Edge
用于边缘科学应用的神经形态网络的自动化设计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Catherine D. Schuman;J. P. Mitchell;Maryam Parsa;J. Plank;Samuel D. Brown;G. Rose;R. Patton;T. Potok - 通讯作者:
T. Potok
Medical Management of Uterine Fibroids
子宫肌瘤的医疗管理
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0.5
- 作者:
M. Parsanezhad;B. Namavar Jahromi;Maryam Parsa - 通讯作者:
Maryam Parsa
Hyperparameter Optimization and Feature Inclusion in Graph Neural Networks for Spiking Implementation
图神经网络中用于尖峰实现的超参数优化和特征包含
- DOI:
10.1109/icmla58977.2023.00232 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:0
- 作者:
Guojing Cong;Shruti R. Kulkarni;Seung;Prasanna Date;Shay Snyder;Maryam Parsa;Dominic Kennedy;C. Schuman - 通讯作者:
C. Schuman
Neuromorphic Computing for Autonomous Racing
用于自动驾驶赛车的神经形态计算
- DOI:
10.1145/3477145.3477170 - 发表时间:
2021-07-27 - 期刊:
- 影响因子:0
- 作者:
R. Patton;Catherine D. Schuman;Shruti R. Kulkarni;Maryam Parsa;J. P. Mitchell;N. Haas;Christopher G. Stahl;S. Paulissen;Prasanna Date;T. Potok;Shay Sneider - 通讯作者:
Shay Sneider
Maryam Parsa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多功能Bio-Ag NCs负载miR-200c靶向治疗耐药乳腺癌的研究
- 批准号:81871474
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:面上项目
养老设施无障碍环境的色彩设计理论与方法研究
- 批准号:51808382
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
具有超高分辨率的M-NCs/M-NPs A/SAM/MEA结构光寻址生化传感器及其生化量检测研究
- 批准号:61471207
- 批准年份:2014
- 资助金额:81.0 万元
- 项目类别:面上项目
大肠杆菌胞嘧碱通透酶CodB结构和功能的研究
- 批准号:31300618
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
铝通过Ca2+敏感的通路抑制Ⅰ组mGluR依赖LTD机制的研究
- 批准号:30972512
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2319492 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319617 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant