Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
基本信息
- 批准号:2319451
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mapping the connections in human brains as networked systems, i.e., brain graphs, has become a pervasive paradigm in neuroscience. In cognitive development, aging, and disease, it is crucial to understand how the structures and functions of the brain change over time to provide insights into individual differences and the mechanisms underlying different behaviors and disorders. Traditional models, however, mostly treat the brain graphs as “static,” ignoring the underlying changes over time. This project aims to develop new methods for modeling the dynamics of brain graphs that are robust in generating accurate, interpretable, and fair predictions. This interdisciplinary project will provide a unique mix of training for the participating researchers, and the research findings will be incorporated into education. The investigators will disseminate their findings through an established benchmark platform, new publications, tutorials, and collaborations with domain experts.This project seeks to overcome the barriers of existing static brain graph models and develop practical foundations and computational tools for processing and analyzing complex brain graphs derived from dynamic neuroimaging data. The project will develop a unified framework of Brain Graph Ordinary Differential Equations (BrainGDE) interweaving advanced deep graph learning techniques and ordinary differential equations, addressing the challenges of data complexity, model interpretability, fairness and trustworthiness, as well as clinical transformation. Planned research tasks will focus on: (1) unimodal dynamic brain graph mining, (2) multimodal dynamic brain graph mining, and (3) clinical investigations, in collaboration with domain experts. If successful, this research will reshape deep learning approaches for temporal data mining in bioinformatics and healthcare technologies. The dynamic graph mining framework established in this project will also guide research on the problems of sensing, knowledge discovery, reasoning, and inference on high-dimensional dynamic data with structures and will serve as a universal benchmark for future work in this direction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将人类大脑中的连接映射为网络系统,即脑图,已成为神经科学中的普遍范式,在认知发展、衰老和疾病中,了解大脑的结构和功能如何随时间变化至关重要。然而,传统模型大多将大脑图视为“静态”,而忽略了随着时间的推移而发生的潜在变化。生成能力强准确、可解释和公平的预测。这个跨学科项目将为参与的研究人员提供独特的培训组合,研究结果将纳入教育中,研究人员将通过已建立的基准平台、新出版物、教程来传播他们的研究结果。以及与领域专家的合作。该项目旨在克服现有静态脑图模型的障碍,并开发用于处理和分析源自动态神经影像数据的复杂脑图的实用基础和计算工具。该项目将开发一个统一的 Brain Graph Ordinary 框架。微分Equations(BrainGDE)将先进的深度图学习技术和常微分方程交织在一起,解决数据复杂性、模型可解释性、公平性和可信性以及临床转化的挑战。计划的研究任务将集中在:(1)单峰动态脑图挖掘。 ,(2)多模式动态脑图挖掘,以及(3)临床研究,如果成功,这项研究将重塑生物信息学和医疗保健技术中时态数据挖掘的深度学习方法。该项目建立的图挖掘框架还将指导对具有结构的高维动态数据的感知、知识发现、推理和推理问题的研究,并将作为未来该方向工作的通用基准。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lifang He其他文献
Improved Glowworm Swarm Optimization Algorithm for Multilevel Color Image Thresholding Problem
改进的萤火虫群优化算法解决多级彩色图像阈值问题
- DOI:
10.1155/2016/3196958 - 发表时间:
2016-09-05 - 期刊:
- 影响因子:0
- 作者:
Lifang He;Songwei Huang - 通讯作者:
Songwei Huang
DeepVASP-E: A Flexible Analysis of Electrostatic Isopotentials for Finding and Explaining Mechanisms that Control Binding Specificity
DeepVASP-E:静电等电位的灵活分析,用于寻找和解释控制结合特异性的机制
- DOI:
10.1101/2021.08.22.456843 - 发表时间:
2021-08-23 - 期刊:
- 影响因子:0
- 作者:
F. M. Quintana;Zhaoming Kong;Lifang He;B. Chen - 通讯作者:
B. Chen
Chinese Medicine Combined With EGFR-TKIs Prolongs Progression-Free Survival and Overall Survival of Non-small Cell Lung Cancer (NSCLC) Patients Harboring EGFR Mutations, Compared With the Use of TKIs Alone
与单独使用 TKI 相比,中药联合 EGFR-TKIs 可延长携带 EGFR 突变的非小细胞肺癌 (NSCLC) 患者的无进展生存期和总生存期
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:5.2
- 作者:
Yujia Wang;Guoyu Wu;Ru Li;Ying;Xinming Huang;Lifang He;Hui Zhong;Shaoquan Xiong - 通讯作者:
Shaoquan Xiong
Combination of an Antiviral Drug and Immunomodulation against Hepadnaviral Infection in the Woodchuck Model
抗病毒药物与免疫调节联合治疗土拨鼠模型中的肝炎病毒感染
- DOI:
10.1128/jvi.01613-07 - 发表时间:
2007-12-26 - 期刊:
- 影响因子:5.4
- 作者:
Mengji Lu;X. Yao;Yang Xu;H. Lorenz;U. Dahmen;H. Chi;O. Dirsch;T. Kemper;Lifang He;D. Glebe;W. Gerlich;Y. Wen;M. Roggendorf - 通讯作者:
M. Roggendorf
nmODE-MVC: Neural Memory ODE-Based Multi-View Clustering
nmODE-MVC:基于神经记忆 ODE 的多视图聚类
- DOI:
10.1109/acait60137.2023.10528630 - 发表时间:
2023-11-10 - 期刊:
- 影响因子:0
- 作者:
Yan Zheng;Song Wu;Yazhou Ren;X. Pu;Zenglin Xu;Lifang He;Zhang Yi - 通讯作者:
Zhang Yi
Lifang He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lifang He', 18)}}的其他基金
MRI: Development of Heterogeneous Edge Computing Platform for Real-Time Scientific Machine Learning
MRI:开发用于实时科学机器学习的异构边缘计算平台
- 批准号:
2215789 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RI: Small: A Study of Agent's Expectations for Nondeterministic and Dynamic Domains
RI:小:代理对非确定性和动态域的期望的研究
- 批准号:
1909879 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
多功能Bio-Ag NCs负载miR-200c靶向治疗耐药乳腺癌的研究
- 批准号:81871474
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:面上项目
养老设施无障碍环境的色彩设计理论与方法研究
- 批准号:51808382
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
具有超高分辨率的M-NCs/M-NPs A/SAM/MEA结构光寻址生化传感器及其生化量检测研究
- 批准号:61471207
- 批准年份:2014
- 资助金额:81.0 万元
- 项目类别:面上项目
大肠杆菌胞嘧碱通透酶CodB结构和功能的研究
- 批准号:31300618
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
铝通过Ca2+敏感的通路抑制Ⅰ组mGluR依赖LTD机制的研究
- 批准号:30972512
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2319492 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319619 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319617 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant