NCS-FR: Engineering Brain Circuits for Complex Scene Analysis
NCS-FR:用于复杂场景分析的工程大脑电路
基本信息
- 批准号:2319321
- 负责人:
- 金额:$ 296.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Everyday social situations, like a crowded party, a restaurant, a classroom, or an open-plan workplaces, involve multiple speakers and listeners and the hum of background noise. In these complex sound environments, humans with typical hearing are able to identify and listening to individual sound sources, for example what a single speaker is saying, while ignoring the other sound sources, for example someone else's phone call or background noise, like cars driving down the street. This is an example of a general problem called complex scene analysis (CSA), and a full understanding of how humans with typical hearing solve this problem has remained elusive to scientists from a diverse range of fields - neuroscience, computer science, speech recognition and engineering - even after more than 50 years of research. Because of this, CSA remains a problem for many humans, like those with hearing impairment, for medical devices, like hearing aids, and for technology, for example automatic speech recognition systems. This project investigates the neural basis of complex scene analysis in typical hearing, and, based on these discoveries, develops a brain inspired algorithm for CSA. This project will ultimately improve quality of life through a variety of applications, for example for improving the effectiveness of hearing aids and speech recognition technologies. Solving this problem requires an interdisciplinary effort, and as part of the research, an educational platform is developed to train students to integrate knowledge from a variety of disciplines that makes them better able to address challenging and important societal problems. This project integrates three interdisciplinary research threads to develop the brain-inspired algorithm. The first thread uses brain imaging in humans performing CSA with an integrated wearable device that measures brain signals (functional near-infrared spectroscopy and electroencephalography), and machine learning methods to decode where a subject is attending in a complex audiovisual scene. The second thread investigates cortical circuits for CSA in attentive states, which are thought to enhance CSA performance. This thread integrates electrophysiology, optogenetics, behavior and computational modeling in mice, a model system with well-established, powerful experimental tools for unraveling cortical circuits. The third thread designs an attention steered algorithm for the wearable device that selectively processes an attended source in a complex scene, integrating the attended location decoded from a subject’s brain signals (thread 1), and a model of cortical circuits in attentive states (thread 2). This thread optimizes the algorithm to generate a fast, compact, energy efficient, and state of the art algorithm for CSA and evaluate its performance in humans.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
日常社交场合,例如拥挤的聚会、餐厅、教室或开放式工作场所,都会涉及多个扬声器和听众以及背景噪音,在这些复杂的声音环境中,具有正常听力的人能够识别和聆听。忽略其他声源,例如其他人的电话或背景噪音,例如街道上行驶的汽车。这是一个称为复杂场景分析的常见问题的示例。 (CSA),以及对人类如何即使经过 50 多年的研究,对于神经科学、计算机科学、语音识别和工程学等不同领域的科学家来说,用典型的听力解决这个问题仍然是一个难题。因此,CSA 对于许多人来说仍然是一个问题。该项目研究了典型听力中复杂场景分析的神经基础,并根据这些发现开发了一种受大脑启发的算法。该项目最终将通过各种应用来提高生活质量,例如提高助听器和语音识别技术的有效性。解决这个问题需要跨学科的努力,作为研究的一部分,开发了一个教育平台来培训学生整合知识。该项目整合了三个跨学科的研究线索,以开发受大脑启发的算法,第一个线索使用人类的大脑成像,通过集成的可穿戴设备进行 CSA 测量。大脑信号(功能性近红外)第二条线索研究了注意力状态下 CSA 的皮质回路,该线索整合了电生理学、光遗传学、行为增强。第三个线程为可穿戴设备设计了一种注意力引导算法,可以选择性地处理数据。复杂场景中的参与源,集成从受试者的大脑信号解码的参与位置(线程 1)以及注意力状态下的皮质电路模型(线程 2)。该线程优化了算法,以生成快速、紧凑、节能的算法。 ,以及最先进的 CSA 算法,并评估其在人类中的表现。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kamal Sen其他文献
A brain-inspired algorithm improves “cocktail party” listening for individuals with hearing loss
受大脑启发的算法改善了听力损失人士的“鸡尾酒会”听力
- DOI:
10.1101/2024.05.01.592078 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:0
- 作者:
Alexander D. Boyd;Virginia Best;Kamal Sen - 通讯作者:
Kamal Sen
Improving promotional effectiveness for consumer goods—A dynamic Bayesian approach
提高消费品促销效果——动态贝叶斯方法
- DOI:
10.1002/asmb.2617 - 发表时间:
2021-03-16 - 期刊:
- 影响因子:1.4
- 作者:
Balaji Raman;Kamal Sen;Venu M. Gorti;N. Ravishanker - 通讯作者:
N. Ravishanker
fNIRS dataset during complex scene analysis
复杂场景分析期间的 fNIRS 数据集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew Ning;Sudan Duwadi;M. Yücel;A. von Lühmann;David A. Boas;Kamal Sen - 通讯作者:
Kamal Sen
Analyzing Variability in Neural Responses to Complex Natural Sounds in the Awake
分析清醒时对复杂自然声音的神经反应的变异性
- DOI:
10.1002/047147844x.pc1506 - 发表时间:
2009 - 期刊:
- 影响因子:9.1
- 作者:
Eric Larson;C. P. Billimoria;Kamal Sen;G. Graña;C. P. Billimoria;K. Sen Songbird - 通讯作者:
K. Sen Songbird
Advances in Wearable High Density fNIRS and Utility for BCI
可穿戴式高密度 fNIRS 的进展和 BCI 实用性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David A. Boas;A. Lühmann;M. Yücel;Matthew Ning;Sudan Duwadi;Kamal Sen;A. Ortega;Joe O’Brien;Laura Carlton;Bernhard Zimmermann - 通讯作者:
Bernhard Zimmermann
Kamal Sen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kamal Sen', 18)}}的其他基金
NCS-FO: Unraveling Cortical Circuits for Auditory Scene Analysis
NCS-FO:揭示听觉场景分析的皮层回路
- 批准号:
1835270 - 财政年份:2018
- 资助金额:
$ 296.19万 - 项目类别:
Standard Grant
相似国自然基金
赤泥制备FR-SAC过程中含铁矿相的形成机理及定向调控研究
- 批准号:22308340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MICP-FR协同加固的深部软弱夹层岩体宏细观长期性能演化机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
小麦抗冻基因Fr-A2的定位克隆和功能分析
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
芜菁根膨大主效基因FR7.1的克隆及功能解析
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
氮杂螺环构建的新策略以及lapidilectine B和FR901483的全合成研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Beyond the ventral stream: Reverse engineering the neurocomputational basis of physical scene understanding in the primate brain
合作研究:NCS-FR:超越腹侧流:逆向工程灵长类大脑中物理场景理解的神经计算基础
- 批准号:
2123963 - 财政年份:2021
- 资助金额:
$ 296.19万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FR: Beyond the ventral stream: Reverse engineering the neurocomputational basis of physical scene understanding in the primate brain
合作研究:NCS-FR:超越腹侧流:逆向工程灵长类大脑中物理场景理解的神经计算基础
- 批准号:
2124136 - 财政年份:2021
- 资助金额:
$ 296.19万 - 项目类别:
Standard Grant
CRCNS:US-Fr Research: Neurobehavioral Assessment of a Reward Learning Model
CRCNS:US-Fr 研究:奖励学习模型的神经行为评估
- 批准号:
9143067 - 财政年份:2015
- 资助金额:
$ 296.19万 - 项目类别:
CRCNS:US-Fr Research: Neurobehavioral Assessment of a Reward Learning Model
CRCNS:US-Fr 研究:奖励学习模型的神经行为评估
- 批准号:
9313241 - 财政年份:2015
- 资助金额:
$ 296.19万 - 项目类别:
CRCNS:US-Fr Research: Neurobehavioral Assessment of a Reward Learning Model
CRCNS:US-Fr 研究:奖励学习模型的神经行为评估
- 批准号:
9052451 - 财政年份:2015
- 资助金额:
$ 296.19万 - 项目类别: