CISE-MSI: DP: SaTC: CyIndiBee - CyberInfrastructure for video analysis of individual bee behavior
CISE-MSI:DP:SaTC:CyIndiBee - 用于单个蜜蜂行为视频分析的网络基础设施
基本信息
- 批准号:2318597
- 负责人:
- 金额:$ 59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of the CyIndiBee project is to build an innovative cyberinfrastructure showcasing the use of modern Artificial Intelligence (AI) approaches in the study of pollinator behavior in the Caribbean. Pollinators are a key part of our food production system and play a critical role in the life cycle of plants and their ecosystems. Climate change and other anthropogenic activities are endangering pollinators and their habitats, causing behavioral changes, and leading to serious consequences for humans, especially in areas with scarce ecological diversity. A keen understanding of the complex effects that environmental changes, contaminants, and other factors produced on pollinator behavior and their biological mechanisms is needed urgently. This project will develop new computer vision, software and data analysis tools to expand our capacity to measure the individual behavior of a large number of pollinators in order to gather more detailed data over longer periods of time. The contributions will lead to mature and robust tools for automatic video monitoring of insects, which can be readily used and deployed in the field. The project will consolidate the partnership between the Computer Science department and the biology department at UPR Rio Piedras (UPR-RP), a Hispanic Minority Serving Institution (MSI). It will integrate undergraduate and graduate student training into research-intensive activities, thus creating a critical mass of closely interacting professors and students conducting state-of-the-art transdisciplinary research. The project will increase UPR-RP's capacity in the Computer Science field to promote innovation and growth in AI related research. This project is a first step towards transforming UPRRP into the reference research center in the Caribbean on the topic of Artificial Intelligence applied to transdisciplinary research in climate change.This project will develop an integrated cyberinfrastructure for pollinator video monitoring that combines (i) new deep learning models for detection and characterization of bee behavior, phenotype, and identity, (ii) a computational platform to collect monitoring data and perform behavior analysis with graphical interfaces usable by both the biology end-user and AI researchers, (iii) tools for the analysis of long-term individual behavior. The deep learning models leverage the Vision Transformer architecture to provide powerful pre-training using Masked Image Modeling on unannotated video data, thus reducing the need for large annotation efforts when deploying new collection setups. They will also provide flexibility with an extendable system of trainable query tokens to extract various types of information (pose, tag, marking, morphology, presence of pollen…) from the same latent representations. The computational platform will integrate a web application for video visualization and behavior annotation, with interactive dashboards for the analysis of individual behavior and phenotype, from data collected from long-term video monitoring. These tools will be applied to individual analyses to recognize patterns of shift-work and seasonal activity in both marked and unmarked bees. The large-scale analysis enabled by the new cyber-infrastructure will be demonstrated by the creation of two new curated datasets: a large-scale honeybee re-identification dataset, and a foraging behavior dataset combining multiple colonies and foraging trips at the individual and colony level including the presence of pollen and morphology of the bees.This project is jointly funded by the CISE MSI Research Expansion Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
CyIndiBee 项目的目标是建立一个创新的网络基础设施,展示现代人工智能 (AI) 方法在加勒比地区授粉媒介行为研究中的应用。授粉媒介是我们粮食生产系统的关键组成部分,在粮食生产中发挥着关键作用。气候变化和其他人类行为活动正在危及传粉媒介及其栖息地,造成变化,并给人类带来严重后果,特别是在生态多样性稀缺的地区。该项目将开发新的计算机视觉、软件和数据分析工具,以扩大我们测量大量个体行为的能力。授粉昆虫,以便在较长时间内收集更详细的数据。这些贡献将带来成熟而强大的昆虫自动视频监测工具,这些工具可以在现场轻松使用和部署。 UPR Rio 科学系和生物系Piedras (UPR-RP) 是一家西班牙裔少数族裔服务机构 (MSI) 它将把本科生和研究生培训融入研究密集型活动中,从而培养一批密切互动的教授和学生,开展最先进的跨学科研究。该项目将提高 UPR-RP 在计算机科学领域的能力,以促进人工智能相关研究的创新和增长。该项目是将 UPRRP 转变为加勒比地区人工智能应用主题的参考研究中心的第一步。跨学科的该项目将开发用于传粉媒介视频监控的综合网络基础设施,该基础设施结合了(i)用于检测和表征蜜蜂行为、表型和身份的新深度学习模型,(ii)用于收集监控数据并执行操作的计算平台通过生物学最终用户和人工智能研究人员都可以使用的图形界面进行行为分析,(iii) 用于分析长期个体行为的工具,深度学习模型利用 Vision Transformer 架构,使用掩模图像建模提供强大的预训练。在未注释的视频数据,从而减少部署新收集设置时对大量注释工作的需求。它们还将通过可训练查询标记的可扩展系统提供灵活性,以提取各种类型的信息(姿势、标签、标记、形态、花粉的存在……)。该计算平台将集成用于视频可视化和行为注释的网络应用程序,以及用于分析个人行为和表型的交互式仪表板,这些工具将应用于个人。分析以识别模式标记和未标记蜜蜂的轮班工作和季节性活动将通过创建两个新的精选数据集来演示:大规模蜜蜂重新识别数据集和觅食数据集。行为数据集结合了多个蜂群以及个体和蜂群水平的觅食行程,包括蜜蜂的花粉和形态。该项目由 CISE MSI 研究扩展计划和刺激竞争性研究既定计划共同资助(EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Remi Megret其他文献
Remi Megret的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Remi Megret', 18)}}的其他基金
BIGDATA: Collaborative Research: IA: Large-Scale Multi-Parameter Analysis of Honeybee Behavior in their Natural Habitat
BIGDATA:协作研究:IA:蜜蜂自然栖息地行为的大规模多参数分析
- 批准号:
1633164 - 财政年份:2016
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: Large-Scale Multi-Parameter Analysis of Honeybee Behavior in their Natural Habitat
BIGDATA:协作研究:IA:蜜蜂自然栖息地行为的大规模多参数分析
- 批准号:
1707355 - 财政年份:2016
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
相似国自然基金
外泌体MSI1调控去泛素化酶USP28诱导肝Kupffer细胞极化在乳腺癌肝转移中的作用和机制研究
- 批准号:82303449
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MALDI-MSI技术的我国白头翁属药材显微质谱成像鉴定研究
- 批准号:82373999
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
探索MSI-H肿瘤内源TREX1调控抗肿瘤免疫的机制及相关免疫治疗策略开发
- 批准号:82371848
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
MSI1/circBRCA1调控LATS1mRNA稳定性促进BRCA1突变的卵巢癌铂敏感的分子机理
- 批准号:82303588
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维MSi2N4半导体点缺陷的电子显微学研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
- 批准号:
2318657 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318662 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318663 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
- 批准号:
2318658 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: III: Information Integration and Association Pattern Discovery in Precision Phenomics
合作研究:CISE-MSI:DP:III:精密表型组学中的信息集成和关联模式发现
- 批准号:
2318708 - 财政年份:2023
- 资助金额:
$ 59万 - 项目类别:
Standard Grant