Building-Block-Flow Model for Large-Eddy Simulation
用于大涡模拟的积木流模型
基本信息
- 批准号:2317254
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational fluid dynamics stands as an essential tool for the design and optimization of aerodynamic/hydrodynamic vehicles. It is estimated that the impact of reducing transportation drag by 5% would be equivalent to that of doubling the US wind energy production. However, computational predictions of fluid flows around realistic vehicles poses a unique challenge due to the ubiquity of complex flow physics, including adverse pressure-gradient effects, flow separation, and laminar-to-turbulent transition. While some computational models predict one or two scenarios, no model performs accurately across all flow phenomena. This project will seek to devise a unified closure model for computational fluid dynamics capable of accounting for a rich collection of flow physics. The goals of this project are to couple fundamental physics and machine-learning modeling for a new computational fluids model. The project also leverages existing programs to promote diversity and inclusion in engineering, including participation in annual summer research programs and undergraduate research opportunities to engage women and underrepresented minorities.The core assumption of the closure model proposed is that a finite set of simple canonical flows contains the essential physics to predict more complex scenarios. The approach is implemented using artificial neural networks with large-eddy simulation and brings together five unique advances: (1) the model is directly applicable to arbitrary complex geometries, (2) it is constructed to predict different flow regimes (zero/favorable/adverse mean-pressure-gradient wall turbulence, separation, statistically unsteady turbulence with mean-flow three-dimensionality, and laminar flow), (3) the model can be scaled-up to capture additional flow physics if needed (e.g., shock waves), (4) the model guarantees consistency with the numerical discretization and the gridding strategy by compensating for numerical errors, and (5) the output of the model is accompanied by a confidence score in the prediction used for uncertainty quantification and grid refinement. The cases of study range from canonical flat plate turbulence to complex flows such as realistic aircraft configurations. The foundations established in this work will enable new venues to model multiple flow regimes in computational fluid dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算流体动力学是空气动力学/流体动力学车辆设计和优化的重要工具。据估计,运输阻力减少5%的影响相当于美国风能产量增加一倍。然而,由于复杂的流动物理现象无处不在,包括不利的压力梯度效应、流动分离和层流到湍流的转变,对现实车辆周围流体流动的计算预测提出了独特的挑战。虽然一些计算模型可以预测一种或两种情况,但没有任何模型能够在所有流动现象中准确执行。该项目将寻求为计算流体动力学设计一个统一的闭合模型,能够解释丰富的流动物理学集合。该项目的目标是将基础物理和机器学习建模结合起来,形成新的计算流体模型。该项目还利用现有计划来促进工程领域的多样性和包容性,包括参与年度夏季研究计划和本科生研究机会,以吸引女性和代表性不足的少数族裔。所提出的闭合模型的核心假设是一组有限的简单规范流程包含预测更复杂场景的基本物理原理。该方法使用具有大涡模拟的人工神经网络来实现,并汇集了五个独特的进步:(1)该模型可直接适用于任意复杂的几何形状,(2)它的构建是为了预测不同的流态(零/有利/不利)平均压力梯度壁湍流、分离、平均流三维统计不稳定湍流和层流),(3) 如果需要,可以放大模型以捕获额外的流动物理场(例如,冲击波),(4)模型通过补偿数值误差来保证数值离散和网格化策略的一致性,以及(5)模型的输出伴随着用于不确定性量化的预测的置信度得分和网格细化。研究案例范围从典型的平板湍流到复杂的流动,例如现实的飞机配置。这项工作建立的基础将使新场所能够对计算流体动力学中的多种流态进行建模。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Lozano-Duran其他文献
Adrian Lozano-Duran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Lozano-Duran', 18)}}的其他基金
CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
- 批准号:
2140775 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似国自然基金
曝气滴灌迷宫流道多相流流动特性与系统参数优化
- 批准号:51909113
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
油气混输管道水合物沉积与剥离脱落机理研究
- 批准号:51904330
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
可燃冰固态流化开采中天然气水合物浆体分解机理与输送规律研究
- 批准号:51874323
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
动水作用下泥石流堵塞大河判据研究
- 批准号:41601004
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
泥石流堵塞主河的机理及临界条件研究
- 批准号:41672341
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
The Diagnostic, PCR-based Test to Detect SARS-CoV2 RNA (COVID-19): Solving the Global Shortage of the Key Organic Building Block Using Flow Chemistry
基于 PCR 的诊断性检测 SARS-CoV2 RNA (COVID-19):利用流动化学解决全球关键有机构件的短缺问题
- 批准号:
554166-2020 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Alliance Grants
The Diagnostic, PCR-based Test to Detect SARS-CoV2 RNA (COVID-19): Solving the Global Shortage of the Key Organic Building Block Using Flow Chemistry
基于 PCR 的诊断性检测 SARS-CoV2 RNA (COVID-19):利用流动化学解决全球关键有机构件的短缺问题
- 批准号:
554166-2020 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Alliance Grants
Optical Deconstruction of the Neuro-vascular Unit: Delineating the Unitary Building Block of the Central Nervous System
神经血管单元的光学解构:描绘中枢神经系统的单一构建块
- 批准号:
334232 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Operating Grants
Development of a "building block" model for flow of fluids in petroleum reservoirs
开发石油储层流体流动的“积木”模型
- 批准号:
256366-2001 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Industrial Research Fellowships
Development of a "building block" model for flow of fluids in petroleum reservoirs
开发石油储层流体流动的“积木”模型
- 批准号:
256366-2001 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Industrial Research Fellowships