Predicting the spread and impact of transmissible vaccines

预测传染性疫苗的传播和影响

基本信息

  • 批准号:
    2314616
  • 负责人:
  • 金额:
    $ 66.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Infectious diseases that normally thrive in wild animals occasionally make the leap into the human population. For instance, rabies virus infects and kills tens of thousands of people each year when wild animals carrying the virus bite humans and transmit the virus to them. Other viruses that occasionally leap from animals to humans are even more dangerous because they can also transmit from human to human and thus potentially seed epidemics or pandemics. Unfortunately, we do not yet have effective solutions in place to stop these infectious diseases from spilling over into the human population. Instead, our current approach to these animal diseases is reactive, and focuses on medical treatment of humans who have become infected and corralling human outbreaks before they can spread and become full blown epidemics or pandemics. A promising solution to this challenging problem is the development of wildlife vaccines that can spread themselves from one animal to the next. By self-disseminating, these vaccines magnify the spread of immunity within the wild animal population and reduce or eliminate the risk of spillover into the human population. Although multiple self-disseminating animal vaccines are being developed, we do not yet have the mathematical, statistical, and computational tools we need to critically evaluate their performance and thus make informed decisions about their possible use. Work on this project will develop these quantitative tools and enable candidate self-disseminating vaccines to be critically evaluated before they are used. In addition, this project will train first-generation college students from rural backgrounds to use mathematical and computational models to evaluate and optimize emerging biotechnologies critical to the future of the US economy. Student recruitment will be facilitated by offering competitive financial support that relieves pressure to abandon research experiences in favor of traditional employment. Finally, this project will continue development of a website that explains self-disseminating vaccines to the public, disseminates relevant research results, and examines the state of this emerging technology.Before making the decision to conduct even small-scale field trials, the likelihood that a self-disseminating vaccine will improve human health should be quantified. This requirement poses a formidable technical challenge because data on the behavior of the vaccine within the target animal population cannot be collected prior to release. This project will overcome this technical challenge using mathematical models of recombinant vector transmissible vaccines that can be parameterized using a combination of field and laboratory data. Specifically, mathematical models will be developed that integrate the age structure of the reservoir population and the explicit pattern of vaccine shedding from animals infected with vaccine. These models will take the form of a system of partial differential equations. Field data will come from trapping studies of the reservoir animal that record the age of each captured animal and whether it was infected by the vector virus used to construct the candidate vaccine. Laboratory data will describe the temporal pattern of vaccine shedding from reservoir animals experimentally infected with the vaccine. Approximate Bayesian computation will be used to parameterize the models and a stochastic simulation framework developed for predicting the outcome of a proposed vaccine release. By repeatedly simulating a vaccine release for models parameterized by drawing randomly from the posterior distribution, this framework faithfully integrates reservoir ecology, randomness in biological processes, and uncertainty in parameter estimates. The methodology developed by this project will be applied to a prototype self-disseminating vaccine for Lassa virus but will be broadly applicable to self-disseminating vaccines developing for a range of animal reservoirs.This project is jointly funded by the Population and Community Ecology (PCE) Cluster in the Division of Environmental Biology, the Established Program to Stimulate Competitive Research (EPSCoR), and the Mathematical Biology Program in the Division of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通常在野生动物中传播的传染病有时也会传播到人类中。例如,狂犬病病毒每年都会感染并杀死数万人,因为携带该病毒的野生动物咬伤人类并将病毒传播给人类。其他偶尔从动物传播到人类的病毒甚至更加危险,因为它们也可以在人与人之间传播,从而可能引发流行病或大流行。不幸的是,我们还没有有效的解决方案来阻止这些传染病蔓延到人群中。相反,我们目前对这些动物疾病的处理方法是被动的,重点是对已感染的人类进行医疗治疗,并在其传播并成为全面流行病或大流行之前控制人类疾病的爆发。解决这一挑战性问题的一个有希望的解决方案是开发野生动物疫苗,这种疫苗可以从一种动物传播到另一种动物。通过自我传播,这些疫苗扩大了野生动物种群中免疫力的传播,并减少或消除了蔓延到人类种群的风险。尽管正在开发多种自传播动物疫苗,但我们还没有所需的数学、统计和计算工具来严格评估其性能,从而就其可能的使用做出明智的决定。该项目的工作将开发这些定量工具,并使候选自传播疫苗在使用前能够得到严格评估。此外,该项目还将培训来自农村背景的第一代大学生使用数学和计算模型来评估和优化对美国经济未来至关重要的新兴生物技术。将通过提供有竞争力的财务支持来促进学生招生,从而缓解放弃研究经验而转向传统就业的压力。最后,该项目将继续开发一个网站,向公众解释自传播疫苗,传播相关研究成果,并检查这一新兴技术的状况。在决定进行小规模现场试验之前,自传播疫苗将改善人类健康,应该进行量化。这一要求提出了巨大的技术挑战,因为在发布之前无法收集疫苗在目标动物群体中的行为数据。该项目将利用重组载体传播疫苗的数学模型克服这一技术挑战,该模型可以结合现场和实验室数据进行参数化。具体来说,将开发数学模型,将储存者群体的年龄结构和感染疫苗的动物的疫苗排出的明确模式结合起来。这些模型将采用偏微分方程组的形式。现场数据将来自对储存动物的诱捕研究,记录每只捕获动物的年龄以及其是否被用于构建候选疫苗的载体病毒感染。实验室数据将描述实验性感染疫苗的储存动物释放疫苗的时间模式。近似贝叶斯计算将用于参数化模型和随机模拟框架,用于预测拟议疫苗发布的结果。通过反复模拟从后验分布中随机抽取参数化模型的疫苗释放,该框架忠实地整合了储存库生态学、生物过程的随机性和参数估计的不确定性。该项目开发的方法将应用于拉沙病毒自传播疫苗原型,但也将广泛适用于为一系列动物宿主开发的自传播疫苗。该项目由人口与社区生态学 (PCE) 联合资助) 环境生物学部的集群、刺激竞争性研究的既定计划 (EPSCoR) 以及数学和物理科学部的数学生物学计划。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Nuismer其他文献

Scott Nuismer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Nuismer', 18)}}的其他基金

Conference: Coordinating the development of self-disseminating vaccines for spillover prevention
会议:协调自传播疫苗的开发以预防溢出
  • 批准号:
    2216790
  • 财政年份:
    2022
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Standard Grant
EAGER: Evaluating the feasibility of a transmissible vaccine within bat populations.
EAGER:评估蝙蝠种群内传播疫苗的可行性。
  • 批准号:
    2028162
  • 财政年份:
    2020
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Standard Grant
A Bayesian Approach to Inferring the Strength of Coevolution
推断协同进化强度的贝叶斯方法
  • 批准号:
    1450653
  • 财政年份:
    2015
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Continuing Grant
MPS-BIO: Developing a multivariate theory of phenotypic coevolution
MPS-BIO:发展表型协同进化的多元理论
  • 批准号:
    1118947
  • 财政年份:
    2011
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: The role of pathogen resistance in the establishment and persistence of polyploid lineages
论文研究:病原体抗性在多倍体谱系的建立和持续中的作用
  • 批准号:
    0808281
  • 财政年份:
    2008
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Theoretical Approach to Community Coevolution
协作研究:社区共同进化的统一理论方法
  • 批准号:
    0540392
  • 财政年份:
    2006
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Continuing Grant
QEIB: General Genetic Models of the Geographic Mosaic Theory of Coevolution
QEIB:共同进化地理马赛克理论的一般遗传模型
  • 批准号:
    0343023
  • 财政年份:
    2004
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多源数据的新冠肺炎传播风险预测及病死率影响因素研究
  • 批准号:
    82073675
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
ARGs在寒地城市污水系统中的传播扩散、影响机制及预测模拟研究
  • 批准号:
    51979066
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
基于深度融合的信息传播用户行为分析和影响预测研究
  • 批准号:
    U1936108
  • 批准年份:
    2019
  • 资助金额:
    70.0 万元
  • 项目类别:
    联合基金项目
一种基于环境复杂作用机制的传染病联合预测模型构架及其建模技术研究
  • 批准号:
    81903415
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
动态网络中重要节点影响力涌现和消亡的研究
  • 批准号:
    61803266
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

When does a supershedder become a superspreader?: The impact of individual-level heterogeneities on population-level transmission and spread
超级传播者何时成为超级传播者?:个体水平异质性对群体水平传播和传播的影响
  • 批准号:
    NE/X01424X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Research Grant
Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
  • 批准号:
    10549492
  • 财政年份:
    2023
  • 资助金额:
    $ 66.45万
  • 项目类别:
Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
  • 批准号:
    10668064
  • 财政年份:
    2023
  • 资助金额:
    $ 66.45万
  • 项目类别:
Modelling human behaviour response to public policy and its impact on infectious disease spread - case studies using AI/ML, data science, game theory and optimization
模拟人类对公共政策的行为反应及其对传染病传播的影响 - 使用人工智能/机器学习、数据科学、博弈论和优化进行案例研究
  • 批准号:
    572512-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Alliance Grants
An exploratory study on the impact of the spread of novel coronavirus infection on birth rate and parenting
新型冠状病毒感染传播对出生率和育儿影响的探索性研究
  • 批准号:
    22K02378
  • 财政年份:
    2022
  • 资助金额:
    $ 66.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了