Switchable Persistent Spin Helix Devices

可切换的持续自旋螺旋装置

基本信息

  • 批准号:
    2314614
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Power dissipation and energy consumption are a key limiting factor in the future scalability of present computing technologies based on silicon field-effect transistors. Due to their potential for a low switching energy, spintronic devices that leverage the spin of electrons to carry information instead of their charge have long been pursued as an alternative approach, both for digital computing and analog devices. However, realizing the potential of spintronic devices requires overcoming a few basic challenges. First, weak spin-orbit coupling in conventional spintronic materials such as GaAs necessitates transport of electrons over large devices to allow control of the spin. In contrast, using a material with high spin-orbit coupling to make smaller devices leads to rapid loss of spin information due to dephasing: spins rapidly rotating and becoming out of phase with each other. The PIs propose to address these two challenges by leveraging materials with a special class of spin behavior called the persistent spin helix, where electron spins remain in phase even when rotating rapidly, enabling spin information to be retained longer even in high spin-orbit materials. Specifically, by using electric-field tunable persistent spin helix in van der Waals solids with strong spin-orbit coupling, the PIs propose to enable a new class of materials for spintronic devices, where the spin behavior can be sensitively controlled by electric fields and where the device dimensions can be reduced by two to three orders of magnitude due to the significantly stronger spin-orbit coupling. This would help innovate the design of competitive spin field-effect transistors for high-performance and low-power computing. This award also aims to promote research training to historically underrepresented groups in the rapidly growing field of spintronic materials and devices, and thereby contribute to both the technical knowhow and workforce for the development of future microelectronics.The PIs propose to understand the effect of electric field-tuned symmetry and Hamiltonian on the spin texture, spin dynamics, and spin transport of square van der Waals crystals with strong spin-orbit coupling for spintronic devices. With the square symmetry of the basal plane and natural quantum well structures of selected materials, when an external electric field is applied along desired crystallographic orientations, persistent spin helix-type spin-orbit field is expected. With persistent spin helix states and strong spin-orbit coupling, the PIs expect to achieve electric field/electric voltage-switchable symmetry-protected long-range coherent spin transport. The model materials include air-stable, lithography-friendly van der Waals crystals Bi2O2Se and BiOI, and the model devices include persistent spin helix-based spin field effect transistors. The proposed approach for enabling and tuning persistent spin helix does not require careful balance between Rashba and Dresselhaus fields commonly seen in III-V. This makes the proposed model systems a robust platform for exploring spin field effect transistor. The PIs will grow single crystalline orientation-controlled spintronic tetragonal van der Waals semiconductors and fabricate persistent spin helix-based field effect transistors. The PIs will computationally predict and experimentally reveal the spin-polarized band structure, and dynamics and wavelength of persistent spin helix in the model materials and devices. The PIs will also demonstrate the proof-of-concept persistent spin helix-based field effect transistors and reveal the effects of device structure/dimension, gate dielectrics, external voltage/polarization, and temperature on the characteristics and performance of the spin field effect transistor.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
功耗和能耗是当前基于硅场效应晶体管的计算技术未来可扩展性的关键限制因素。由于自旋电子器件具有低开关能量的潜力,利用电子自旋而不是电荷来携带信息的自旋电子器件长期以来一直被视为数字计算和模拟器件的替代方法。然而,实现自旋电子器件的潜力需要克服一些基本挑战。首先,传统自旋电子材料(例如砷化镓)中的弱自旋轨道耦合需要在大型器件上传输电子以控制自旋。相比之下,使用具有高自旋轨道耦合的材料来制造较小的器件会由于相移而导致自旋信息快速丢失:自旋快速旋转并彼此异相。 PI建议通过利用具有称为持久自旋螺旋的特殊自旋行为的材料来解决这两个挑战,其中电子自旋即使在快速旋转时也保持同相,从而使自旋信息即使在高自旋轨道材料中也能保留更长时间。具体来说,通过在具有强自旋轨道耦合的范德华固体中使用电场可调的持久自旋螺旋,PI们建议为自旋电子器件提供一类新型材料,其中自旋行为可以通过电场敏感地控制,并且其中由于自旋轨道耦合明显增强,器件尺寸可以减小两到三个数量级。这将有助于创新具有竞争力的自旋场效应晶体管的设计,以实现高性能和低功耗计算。该奖项还旨在促进对快速发展的自旋电子材料和器件领域中历史上代表性不足的群体的研究培训,从而为未来微电子学的发展提供技术知识和劳动力。PI建议了解电场的影响-对自旋电子器件具有强自旋轨道耦合的方形范德华晶体的自旋纹理、自旋动力学和自旋输运进行调整对称性和哈密顿量。由于所选材料的基面和天然量子阱结构具有正方形对称性,当沿着所需的晶体取向施加外部电场时,预计会出现持续的自旋螺旋型自旋轨道场。凭借持久的自旋螺旋态和强自旋轨道耦合,PI有望实现电场/电压可切换的对称性保护的长程相干自旋传输。模型材料包括空气稳定、适合光刻的范德华晶体 Bi2O2Se 和 BiOI,模型器件包括基于持久自旋螺旋的自旋场效应晶体管。所提出的启用和调整持久自旋螺旋的方法不需要在 III-V 族中常见的 Rashba 场和 Dresselhaus 场之间进行仔细平衡。这使得所提出的模型系统成为探索自旋场效应晶体管的强大平台。 PI 将生长单晶取向控制的自旋电子四方范德华半导体,并制造基于持久自旋螺旋的场效应晶体管。 PI 将通过计算预测并通过实验揭示模型材料和器件中的自旋极化能带结构以及持久自旋螺旋的动力学和波长。 PI还将演示基于持续自旋螺旋的场效应晶体管的概念验证,并揭示器件结构/尺寸、栅极电介质、外部电压/极化和温度对自旋场效应晶体管的特性和性能的影响该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Shi其他文献

Surface and Underwater Acoustic Source Recognition Using Multi-Channel Joint Detection Method Based on Machine Learning
基于机器学习的多通道联合检测方法进行水面和水下声源识别
Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo
用于体内可调蛋白质成像的小型荧光激活和吸收位移标签
  • DOI:
    10.1073/pnas.1513094113
  • 发表时间:
    2015-12-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marie‐Aude Plamont;E. Billon;Sylvie Maurin;Carole Gauron;Frederico M. Pimenta;C. Specht;Jian Shi;Jérôme Querard;Buyan Pan;Julien Rossignol;K. Moncoq;N. Morellet;M. Volovitch;E. Lescop;Yong Chen;A. Triller;S. Vriz;T. Le Saux;L. Jullien;Arnaud Gautier
  • 通讯作者:
    Arnaud Gautier
Reliability Analysis Method on Repairable System with Standby Structure Based on Goal Oriented Methodology
基于目标导向方法的备用结构可修系统可靠性分析方法
Modeling of full-length Piezo1 suggests importance of the proximal N-terminus for dome structure
全长 Piezo1 的建模表明近端 N 末端对于圆顶结构的重要性
  • DOI:
    10.1016/j.bpj.2021.02.003
  • 发表时间:
    2021-02-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jiehan Chong;D. De Vecchis;A. Hyman;O. Povstyan;M. J. Ludlow;Jian Shi;D. Beech;A. Kalli
  • 通讯作者:
    A. Kalli
Microfluidic capture of endothelial progenitor cells in human blood samples
微流体捕获人类血液样本中的内皮祖细胞
  • DOI:
    10.1016/j.mee.2012.11.008
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Junjun Li;D. Broquères;Z. Han;W. He;Sisi Li;Lianmei Jiang;B. Lévy;Jian Shi;Yong Chen
  • 通讯作者:
    Yong Chen

Jian Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Shi', 18)}}的其他基金

CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
  • 批准号:
    2338158
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Chiral Strain Engineering of Polar Semiconductors
极性半导体的手性应变工程
  • 批准号:
    2312944
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
I-Corps: Lignin-derived antimicrobials to control bacterial contamination in fuel ethanol fermentation
I-Corps:木质素衍生抗菌剂可控制燃料乙醇发酵中的细菌污染
  • 批准号:
    2105899
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Symmetry-protected spin dynamics in ferroelectric spin device
铁电自旋器件中对称保护的自旋动力学
  • 批准号:
    2031692
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Scalable Manufacturing of Single Crystalline Halide Perovskite Film via Interface Engineering
通过界面工程大规模制造单晶卤化物钙钛矿薄膜
  • 批准号:
    2024972
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Van der Waals Halide Perovskite Photo-ferroelectric Synapse
范德华卤化物钙钛矿光铁电突触
  • 批准号:
    1916652
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RII Track-4: Elucidating Enzyme-Ionic Liquid Interactions to Enable Effective Lignin Valorization
RII Track-4:阐明酶-离子液体相互作用以实现有效的木质素增值
  • 批准号:
    1929122
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
HOD: Handling missing data and time-varying confounding in causal inference for observational event history data
HOD:处理观测事件历史数据因果推断中的缺失数据和时变混杂
  • 批准号:
    MR/M025152/2
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
SusChEM: Exploring Chalcohalide Split-Anion Perovskite Photovoltaics Materials
SusChEM:探索硫卤化物分裂阴离子钙钛矿光伏材料
  • 批准号:
    1706815
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Modification of Soft Inorganic Thin Films through the use of van der Waals Epitaxial Strain
通过使用范德华外延应变对软无机薄膜进行改性
  • 批准号:
    1635520
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

丙型肝炎病毒感染宿主细胞的分子生物学研究
  • 批准号:
    30870127
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
长白山泥炭地藓类植物有性繁殖与更新对环境变化的响应
  • 批准号:
    30700055
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Neurovascular Uncoupling and Cognitive Impairments of Long COVID in Aging
衰老过程中长新冠病毒的神经血管解偶联和认知障碍
  • 批准号:
    10705851
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Neurovascular Uncoupling and Cognitive Impairments of Long COVID in Aging
衰老过程中长新冠病毒的神经血管解偶联和认知障碍
  • 批准号:
    10537136
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Films
合作研究:铁电氧化物薄膜中持久自旋纹理的设计和演示
  • 批准号:
    2102895
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
  • 批准号:
    2104397
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Understanding the long term impact of COVID-19 on the brain through advanced MR imaging and spectroscopy
通过先进的 MR 成像和光谱学了解 COVID-19 对大脑的长期影响
  • 批准号:
    10445068
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了