EAGER: New interconnect for the perovskite-silicon tandem solar cell: optically transparent and electrically conductive multilayer film

EAGER:钙钛矿-硅串联太阳能电池的新型互连件:光学透明且导电的多层薄膜

基本信息

  • 批准号:
    2314036
  • 负责人:
  • 金额:
    $ 10.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

A solar cell is at the heart of renewable energy devices for harvesting sun light. Out of several light absorbers for solar cells, halide perovskite is an emerging one of high performance. The power conversion efficiency (PCE) of perovskite solar cells (PSCs) is getting close to that of silicon solar cells which are dominant in a commercial market. In addition, PSCs can be manufactured using a simple and cheap synthesis process. Thus, PSCs have a potential to meet an urgent need for low cost and high efficiency power generation. However, the performance of PSCs is not expected to excel that of silicon solar cells due to a theoretical limit. A tandem solar cell consisting of PSC and Si solar cells is a promising solution to overcome such a theoretical limit. Stacks of PSC and silicon solar cell can harness solar energy much better than either PSCs or silicon solar cells. One of key components of the tandem cell is an interconnect which is placed between top PSC and bottom Si solar cells. A good interconnect needs to be electrically conductive and optically transparent. A single layer of oxide semiconductor, which is widely used as the interconnect of the tandem solar cell, does not fully meet these requirements. In this project, comprehensive research on the multilayer of semiconductor and metal films will be performed to address such a need for the interconnect of high electric conductivity and optical transparency. The new multilayer interconnect will improve the performance of the tandem solar cells and accelerate the advent of net zero economy. From the viewpoint of engineering education, the multidisciplinary aspect of this project including materials synthesis, basic science, and device fabrication will reinforce a current trend to ask future scientists and engineers to develop comprehensive knowledge and skills. Though the project, both undergraduate and graduate students will be trained in the areas of materials science, electric engineering and devices physics.Among different tandem cell designs, 2-terminal (2-T) monolithic tandem cells offers the highest PCE, because this design promotes light transmittance and suppresses parasitic resistance by reducing a number of interfaces. In addition, the 2T tandem cell simplifies the device structure and significantly reduces the production cost. However, current 2-T tandem solar cells suffer from a lack of the suitable interconnect which should provide high electric conductivity and optical transparency. This project will address this need by developing the semiconductor-metal-semiconductor (S-M-S) multilayer film. High electric carrier concentration of the central metal layer and high mobility of the semiconductor layer will be combined for the interconnect of the high electric conductivity without decreasing the transparency. The objectives of this exploratory research are 1) to develop a fundamental understanding of the physical interactions between semiconductor and metal layers in transparent conducting S-M-S films, 2) to design a novel S-M-S interconnect which selectively collects photogenerated charge carriers in PSC – silicon tandem solar cells and 3) test the new interconnect in the tandem solar cells. For these purposes, there will be extensive experimental and theoretical research on symmetric and asymmetric metal-semiconductor multilayer films to understand the electronic band structures and the light interference. Outcomes of this project (i.e. the interconnect of high electric and optical performance) will facilitate the electron-hole recombination at the interface and deliver incident to the bottom Si solar cell with minimal interface reflectance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳能电池是用于收集太阳光的可再生能源设备的核心,在太阳能电池的多种光吸收剂中,卤化物钙钛矿是一种新兴的高性能钙钛矿太阳能电池(PSC)的功率转换效率(PCE)。接近商业市场上占主导地位的硅太阳能电池,此外,PSC可以使用简单且廉价的合成工艺来制造,因此,PSC有潜力满足低成本和高效率发电的迫切需求。 。然而,由于存在理论限制,PSC 的性能预计不会优于硅太阳能电池,由 PSC 和硅太阳能电池组成的串联太阳能电池是克服 PSC 和硅太阳能电池堆这一理论限制的有希望的解决方案。串联电池的关键组件之一是放置在顶部 PSC 和底部硅太阳能电池之间的互连件,良好的互连件必须具有导电性和光学透明性。单层广泛用作叠层太阳能电池互连的氧化物半导体并不能完全满足这些要求,在本项目中,将对多层半导体和金属薄膜进行综合研究,以满足高互连的需求。新型多层互连结构将提高串联太阳能电池的性能,并加速净零经济的到来。从工程教育的角度来看,该项目的多学科方面包括材料合成、基础科学和器件。制造将强化当前向未来科学家提问的趋势通过该项目,本科生和研究生都将接受材料科学、电气工程和器件物理领域的培训。在不同的串联电池设计中,2 端 (2-T) 单片串联电池是最重要的。 2T串联电池提供了最高的PCE,因为这种设计通过减少大量接口来提高透光率并抑制寄生电阻,此外,2T串联电池简化了器件结构并显着降低了生产成本。 2-T 串联太阳能电池缺乏合适的互连件来提供高电导率和光学透明度,该项目将通过开发高载流子浓度的半导体-金属-半导体(S-M-S)多层薄膜来满足这一需求。中心金属层和半导体层的高迁移率将在不降低透明度的情况下实现高电导率的互连,这项探索性研究的目标是1)对半导体层和金属层之间的物理相互作用有一个基本的了解。透明的S-M-S薄膜,2)设计一种新颖的S-M-S互连,选择性地收集PSC硅串联太阳能电池中的传导光生电荷载流子,3)测试串联太阳能电池中的新互连,为此,将进行大量的实验和理论研究。对对称和非对称金属半导体多层薄膜的研究,以了解电子能带结构和光干涉,将有助于该项目的成果(即高电学和光学性能的互连)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jung-Kun Lee其他文献

Hierarchical metal nanomesh/microgrid structures for high performance transparent electrodes
  • DOI:
    10.1039/c5ra14851k
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tongchuan Gao;Po-Shun Huang;Jung-Kun Lee;Paul W. Leu
  • 通讯作者:
    Paul W. Leu
Correction: Boosting the solar water oxidation performance of a BiVO4photoanode by crystallographic orientation control
  • DOI:
    10.1039/c9ee90017a
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Hyun Soo Han;Sun Shin;Dong Hoe Kim;Ik Jae Park;Ju Seong Kim;Po-Shun Huang;Jung-Kun Lee;In Sun Cho;Xiaolin Zheng
  • 通讯作者:
    Xiaolin Zheng
Boosting the solar water oxidation performance of a BiVO4photoanode by crystallographic orientation control
  • DOI:
    10.1039/c8ee00125a
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Hyun Soo Han;Sun Shin;Dong Hoe Kim;Ik Jae Park;Ju Seong Kim;Po-Shun Huang;Jung-Kun Lee;In Sun Cho;Xiaolin Zheng
  • 通讯作者:
    Xiaolin Zheng
Highly stable perovskite solar cells in humid and hot environment
  • DOI:
    10.1039/c7ta03881j
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Gill Sang Han;Jin Sun Yoo;Fangda Yu;Matthew Lawrence Duff;Bong Kyun Kang;Jung-Kun Lee
  • 通讯作者:
    Jung-Kun Lee
Epitaxial 1D electron transport layers for high-performance perovskite solar cells
  • DOI:
    10.1039/c5nr03476k
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Gill Sang Han;Hyun Suk Chung;Dong Hoe Kim;Byeong Jo Kim;Jin-Wook Lee;Nam-Gyu Park;In Sun Cho;Jung-Kun Lee;Sangwook Lee;Hyun Suk Jung
  • 通讯作者:
    Hyun Suk Jung

Jung-Kun Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jung-Kun Lee', 18)}}的其他基金

Thermoelectric-Plasmonic Hybrid Infrared Sensor for Uncooled Multispectral Application
适用于非制冷多光谱应用的热电-等离子体混合红外传感器
  • 批准号:
    1709307
  • 财政年份:
    2017
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
Enhanced Photon-Electron Conversion in Thin Film Solar Cells by Propagating Surface Plasmons
通过传播表面等离子体激元增强薄膜太阳能电池中的光子-电子转换
  • 批准号:
    1408025
  • 财政年份:
    2014
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
Seedless Growth of Nanowires and Selective Positioning of Quantum Dots for Flexible and Panchromatic Photoelectrochemical Cells
柔性全色光电化学电池中纳米线的无籽生长和量子点的选择性定位
  • 批准号:
    1333182
  • 财政年份:
    2013
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
Solid State Dye Sensitized Solar Cells Using Tunable Surface Plasmons of Core-Shell Particles
使用核壳粒子可调表面等离子体的固态染料敏化太阳能电池
  • 批准号:
    1235979
  • 财政年份:
    2012
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
CAREER: Electron Injection in Nanostructured Materials: New Paradigm of Transparent Conducting Oxides
职业:纳米结构材料中的电子注入:透明导电氧化物的新范例
  • 批准号:
    0847319
  • 财政年份:
    2009
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant

相似国自然基金

溶酶体膜蛋白LAMP2新突变Y228*促进心肌细胞糖代谢异常导致Danon病心肌病的机制研究
  • 批准号:
    82360048
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于二元重编程的归一化肿瘤疫苗在局部晚期三阴乳腺癌新辅助治疗中的作用与机制研究
  • 批准号:
    32371451
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
甜菊糖苷新位点糖基化的机制研究及其在低热量甜味剂结构创新中的应用
  • 批准号:
    32372277
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
  • 批准号:
    82373758
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
通过机器学习和多模式验证聚焦新靶点ENHO/Adropin在系统性硬化症中的作用和机制研究
  • 批准号:
    82371818
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Studentship
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了