CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
基本信息
- 批准号:2314050
- 负责人:
- 金额:$ 50.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research integrated with education activities to advance the fundamental understanding of quantum defects and discover novel functional material systems for quantum information science and technologies. Qubits and novel quantum devices such as quantum emitters lie at the center of the ongoing quantum information revolution that is expected to transform science and society in previously unimaginable ways. Quantum defects, such as missing atoms or impurities, in two-dimensional materials offer a new paradigm for the realization of patterned fabrication and operation of quantum functionality components. By incorporating symmetry-guided design principles and data-driven approaches, the PI and his team will facilitate breakthroughs for the discovery and design of novel quantum defects with unique electronic structures for quantum information science and technologies. The research will pave the path toward the creation of a quantum defect design platform.The research project will be integrated with educational activities through the incorporation of numerical simulations and machine learning modules, as well as outreach activities to K-12 students. Quantum materials, machine learning, and numerical simulation modules will be incorporated in undergraduate and graduate courses. The construction of an interdisciplinary research environment will allow multi-level students to acquire a complete set of skills and grasp a big picture of quantum information science. The PI will participate in scientific outreach by developing activity kits and demos in collaboration with local science museums including the Franklin Institute. Educational modules for middle school and high school students will be developed to introduce quantum physics and artificial intelligence.TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research activities to develop and utilize first-principles computations and data-driven approaches to provide insights into the quantum phenomena in technologically important defect-based two-dimensional (2D) quantum systems. Quantum defects are characterized by local symmetries and complex interactions with their host materials. The research will advance fundamental understanding of quantum defects in 2D materials as spin qubits and quantum emitters by revealing the interplay of local symmetry and host environment. By harnessing symmetry information and adopting state-of-the-art learning architectures, the PI and his team will develop a novel machine learning framework to enable the use of deep learning for defect property predictions. The ultimate outcome of this project will be to provide fundamental understanding and symmetry-based design principles for targeted quantum defect functionalities in 2D materials and beyond. This will open a new data-driven pathway for quantum information science and technologies based on quantum defects in 2D solid-state systems.The research project will be integrated with educational activities through the incorporation of numerical simulations and machine learning modules, as well as outreach activities to K-12 students. Quantum materials, machine learning, and numerical simulation modules will be incorporated in undergraduate and graduate courses. The construction of an interdisciplinary research environment will allow multi-level students to acquire a complete set of skills and grasp a big picture of quantum information science. The PI will participate in scientific outreach by developing activity kits and demos in collaboration with local science museums including the Franklin Institute. Educational modules for middle school and high school students will be developed to introduce quantum physics and artificial intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。非技术摘要该职业奖项支持与教育活动相结合的理论和计算研究,以增进对量子缺陷的基本理解并发现新颖的功能材料系统量子信息科学与技术。量子位和量子发射器等新型量子设备处于正在进行的量子信息革命的中心,预计将以以前难以想象的方式改变科学和社会。二维材料中的量子缺陷,例如缺失的原子或杂质,为实现量子功能组件的图案化制造和操作提供了新的范例。通过结合对称引导的设计原则和数据驱动的方法,PI 和他的团队将促进量子信息科学和技术中具有独特电子结构的新型量子缺陷的发现和设计的突破。该研究将为创建量子缺陷设计平台铺平道路。该研究项目将通过数值模拟和机器学习模块以及针对 K-12 学生的外展活动与教育活动相结合。量子材料、机器学习和数值模拟模块将纳入本科生和研究生课程。跨学科研究环境的构建,将使多层次的学生获得完整的技能,掌握量子信息科学的大局。 PI 将与包括富兰克林研究所在内的当地科学博物馆合作开发活动套件和演示,参与科学推广。将开发针对中学生和高中生的教育模块,以介绍量子物理和人工智能。技术摘要该职业奖支持理论和计算研究活动,以开发和利用第一原理计算和数据驱动方法,以提供对量子现象的见解在技术上重要的基于缺陷的二维(2D)量子系统中。量子缺陷的特点是局部对称性和与其主体材料的复杂相互作用。该研究将通过揭示局部对称性和宿主环境的相互作用,促进对二维材料中量子缺陷(如自旋量子位和量子发射器)的基本理解。通过利用对称信息并采用最先进的学习架构,PI 和他的团队将开发一种新颖的机器学习框架,以利用深度学习进行缺陷属性预测。该项目的最终成果将是为二维材料及其他材料中的目标量子缺陷功能提供基本的理解和基于对称性的设计原则。这将为基于二维固态系统中量子缺陷的量子信息科学和技术开辟一条新的数据驱动途径。该研究项目将通过数值模拟和机器学习模块的结合以及推广与教育活动相结合K-12 学生的活动。量子材料、机器学习和数值模拟模块将纳入本科生和研究生课程。跨学科研究环境的构建,将使多层次的学生获得完整的技能,掌握量子信息科学的大局。 PI 将与包括富兰克林研究所在内的当地科学博物馆合作开发活动套件和演示,参与科学推广。将开发针对中学生和高中生的教育模块,以介绍量子物理和人工智能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2023 roadmap for materials for quantum technologies
2023 年量子技术材料路线图
- DOI:10.1088/2633-4356/aca3f2
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Becher, Christoph;Gao, Weibo;Kar, Swastik;Marciniak, Christian D.;Monz, Thomas;Bartholomew, John G.;Goldner, Philippe;Loh, Huanqian;Marcellina, Elizabeth;Goh, Kuan Eng Johnson;et al
- 通讯作者:et al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qimin Yan其他文献
Symmetry-guided data-driven discovery of native quantum defects in two-dimensional materials
对称引导数据驱动发现二维材料中的原生量子缺陷
- DOI:
- 发表时间:
2024-05-18 - 期刊:
- 影响因子:0
- 作者:
Jeng;Weiyi Gong;Qimin Yan - 通讯作者:
Qimin Yan
Magnet-in-ferroelectric crystals exhibiting photomultiferroicity.
表现出光电多铁性的铁电晶体中的磁体。
- DOI:
10.1073/pnas.2322361121 - 发表时间:
2024-04-16 - 期刊:
- 影响因子:11.1
- 作者:
Zhongxuan Wang;Qian Wang;Weiyi Gong;Amy Chen;Abdullah Islam;Lina Quan;Taylor J Woehl;Qimin Yan;Shenqiang Ren - 通讯作者:
Shenqiang Ren
Lithiation bridged molecular conducting magnets
锂化桥分子导电磁体
- DOI:
10.1016/j.apmt.2024.102188 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:8.3
- 作者:
Zhongxuan Wang;Yulong Huang;Weiyi Gong;Qimin Yan;Shenqiang Ren - 通讯作者:
Shenqiang Ren
Towards accurate prediction of configurational disorder properties in materials using graph neural networks
使用图神经网络准确预测材料的构型无序特性
- DOI:
10.1038/s41524-024-01283-w - 发表时间:
2024-01-29 - 期刊:
- 影响因子:9.7
- 作者:
Zhenyao Fang;Qimin Yan - 通讯作者:
Qimin Yan
First-principles calculations of defects and electron–phonon interactions: Seminal contributions of Audrius Alkauskas to the understanding of recombination processes
缺陷和电子声子相互作用的第一性原理计算:Audrius Alkauskas 对理解复合过程的开创性贡献
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.2
- 作者:
Xie Zhang;M. Turiansky;Lukas Razinkovas;M. Maciaszek;P. Broqvist;Qimin Yan;J. L. Lyons;C. Dreyer;D. Wickramaratne;Á. Gali;Alfredo Pasquarello;C. G. van de Walle - 通讯作者:
C. G. van de Walle
Qimin Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qimin Yan', 18)}}的其他基金
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323469 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
- 批准号:
2144936 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
相似国自然基金
量子点用于钙钛矿薄膜缺陷管理及太阳电池界面调控
- 批准号:22308112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
定向缺陷钝化工程和稀土掺杂钙钛矿量子点提高锡铅钙钛矿太阳电池效率及稳定性的研究
- 批准号:12304462
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
温度相关的CsPbBr3量子点质子辐照缺陷产生及演化行为研究
- 批准号:12305310
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境友好型AgBiS2量子点缺陷调控及超薄高效光伏器件构筑
- 批准号:52302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CMOS工艺兼容的硅基外延InAs量子点激光器缺陷抑制研究
- 批准号:62274159
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
相似海外基金
CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
- 批准号:
2340733 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
CAREER: Exciton-Phonon Coupling in Quantum Materials: Atomistic Insight for Defects and 2D Materials
职业:量子材料中的激子-声子耦合:缺陷和二维材料的原子洞察
- 批准号:
2144317 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
- 批准号:
2144936 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
CAREER: Investigating the structure and dynamics of proton defects in heterogeneous environments with accelerated quantum simulations
职业:通过加速量子模拟研究异质环境中质子缺陷的结构和动力学
- 批准号:
1652960 - 财政年份:2016
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
CAREER: Quantum Information Science with Single Defects in ZnO
职业:ZnO 单一缺陷的量子信息科学
- 批准号:
1254530 - 财政年份:2013
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant