CPS: Small: Cyber-Physical Phases of Mixed Traffic with Modular & Autonomous Vehicles: Dynamics, Impacts and Management

CPS:小型:模块化混合流量的网络物理阶段

基本信息

  • 批准号:
    2313578
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Emerging technologies in communications and vehicle technologies will allow future autonomous vehicles to be platooned together with wireless communications (cyber-connected) or physically forming an actual train (physically-connected). When physically connected, vehicles may dock to and undock from each other en-route when vehicles are still moving. While such platooning can potentially offer substantial societal benefits in safety, mobility and environmental friendliness, their emergence also challenges the classic traffic flow models that do not account for the state that vehicles can have very short to no gaps from each other. And yet, classic traffic flow models are being used for all traffic simulations for assessment on safety, mobility and environment. This project aims to expand classic highway traffic flow models to account for states where vehicles can be very close to or even physically connected with each other. These new models will help stakeholders plan and manage future transportation systems and supply the engineering curriculum with new methods, tools, and experimental platforms oriented towards future smart urban systems. The objectives of this research are (1) to gain new knowledge on the impacts of the emerging new states in highway traffic dynamics in both ideal (e.g., with zero sensor errors and delay, infinite communication range, and infinite computational power ) and realistic ( e.g., with sensor noise, communication delay and computational limits) operational conditions, (2) to devise mechanisms and managing strategies to properly regulate the multi-state mixed traffic for its best performance, and (3) to quantify the key components of the models and systems via both full-scale and reduced-scale testbeds. These models will provide theoretical insights on the upper-bound performance of a mixed traffic system in ideal operational conditions. Then realistic cyber-physical constraints will be incorporated into the highway system and agent-based simulations will be conducted to understand how the system performance will be compromised due to these real-world cyber-physical constraints. Various management strategies will also be explored via both decentralized (e.g., each individual vehicle making decisions on its own) and centralized (e.g., all vehicles controlled or coordinated by a central operator) control strategies for offsetting the performance of a transportation system closer to the theoretical upper bound. Finally, field experiments on both multi-scale testbeds will be conducted to validate the key components of the theorems and models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通信和车辆技术领域的新兴技术将使未来的自动驾驶车辆能够通过无线通信(网络连接)编排在一起,或在物理上形成真正的列车(物理连接)。当物理连接时,当车辆仍在移动时,车辆可以在途中相互对接和脱离。虽然这种队列行驶可能会在安全性、机动性和环境友好性方面带来巨大的社会效益,但它们的出现也对传统的交通流模型提出了挑战,这些模型没有考虑到车辆之间可以有非常短的间隙甚至没有间隙的情况。然而,经典的交通流模型正在用于所有交通模拟,以评估安全性、流动性和环境。该项目旨在扩展经典的高速公路交通流模型,以考虑车辆可以非常接近甚至物理上相互连接的状态。这些新模型将帮助利益相关者规划和管理未来的交通系统,并为工程课程提供面向未来智能城市系统的新方法、工具和实验平台。 这项研究的目标是(1)获得关于公路交通动态中新兴新状态的影响的新知识,包括理想(例如,零传感器误差和延迟、无限通信范围和无限计算能力)和现实(例如,在传感器噪声、通信延迟和计算限制的情况下)操作条件,(2) 设计机制和管理策略以正确调节多状态混合流量以获得最佳性能,以及 (3) 量化模型的关键组成部分和系统通过两者全尺寸和缩小尺寸的试验台。这些模型将为理想运行条件下混合交通系统的上限性能提供理论见解。然后,将现实的网络物理约束纳入高速公路系统,并进行基于代理的模拟,以了解这些现实世界的网络物理约束将如何影响系统性能。还将通过分散式(例如,每个单独的车辆自行做出决策)和集中式(例如,所有车辆由中央操作员控制或协调)控制策略来探索各种管理策略,以抵消交通系统的性能更接近于实际情况。理论上限。最后,将在两个多尺度测试平台上进行现场实验,以验证定理和模型的关键组成部分。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaopeng Li其他文献

Trajectory prediction dimensionality reduction for low-cost connected automated vehicle systems
低成本互联自动车辆系统的轨迹预测降维
A 2 GSps, 8-Bit Folding and Interpolation ADC with Foreground Calibration in 90 nm CMOS Technology
采用 90 nm CMOS 技术、具有前台校准功能的 2 GSps、8 位折叠和插值 ADC
  • DOI:
    10.1155/2017/3984526
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Zhang;Qiao Meng;Changchun Zhang;Ying Zhang;Yu;Youtao Zhang;Xiaopeng Li;Lei Yang
  • 通讯作者:
    Lei Yang
SWEA: Updating Factual Knowledge in Large Language Models via Subject Word Embedding Altering
SWEA:通过主题词嵌入改变来更新大型语言模型中的事实知识
  • DOI:
  • 发表时间:
    2024-01-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaopeng Li;Shasha Li;Shezheng Song;Huijun Liu;Bing Ji;Xi Wang;Jun Ma;Jie Yu;Xiaodong Liu;Jing Wang;Weimin Zhang
  • 通讯作者:
    Weimin Zhang
G2Auth: secure mutual authentication for drone delivery without special user-side hardware
G2Auth:无人机交付的安全相互认证,无需特殊的用户端硬件
Dynamic modeling and neural network compensation for rotating Euler-Bernoulli beam using a novel deformation description method
使用新颖的变形描述方法对旋转欧拉-伯努利梁进行动态建模和神经网络补偿

Xiaopeng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaopeng Li', 18)}}的其他基金

CPS: Small: NSF-DST: Safety-Aware Behaviour-Driven Reinforcement Learning Based Autonomous Driving Solution for Urban Areas
CPS:小型:NSF-DST:基于安全意识行为驱动的强化学习的城市自动驾驶解决方案
  • 批准号:
    2343167
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Enable Elastic Capacity for Transportation Infrastructure through a Transmodal Modular Autonomous Vehicle System
EAGER/协作研究:通过跨模式模块化自动驾驶车辆系统实现交通基础设施的弹性能力
  • 批准号:
    2313835
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Small: Cyber-Physical Phases of Mixed Traffic with Modular & Autonomous Vehicles: Dynamics, Impacts and Management
CPS:小型:模块化混合流量的网络物理阶段
  • 批准号:
    1932452
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Enable Elastic Capacity for Transportation Infrastructure through a Transmodal Modular Autonomous Vehicle System
EAGER/协作研究:通过跨模式模块化自动驾驶车辆系统实现交通基础设施的弹性能力
  • 批准号:
    2023408
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRISP Type 1/Collaborative Research: Population-Infrastructure Nexus: A Heterogeneous Flow-based Approach for Responding to Disruptions in Interdependent Infrastructure Systems
CRISP 类型 1/协作研究:人口-基础设施关系:一种基于异构流的方法,用于响应相互依赖的基础设施系统的中断
  • 批准号:
    1541130
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Design and Self-Assembly of Giant Metallo-Supramolecules Based on Density of Coordination Sites (DOCS)
基于配位点密度(DOCS)的巨型金属超分子的设计与自组装
  • 批准号:
    1664434
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CRISP Type 1/Collaborative Research: Population-Infrastructure Nexus: A Heterogeneous Flow-based Approach for Responding to Disruptions in Interdependent Infrastructure Systems
CRISP 类型 1/协作研究:人口-基础设施关系:一种基于异构流的方法,用于响应相互依赖的基础设施系统的中断
  • 批准号:
    1634738
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRISP Type 2/Collaborative Research: Harnessing Interdependency for Resilience: Creating an "Energy Sponge" with Cloud Electric Vehicle Sharing
CRISP 类型 2/合作研究:利用相互依赖性实现弹性:通过云电动汽车共享创建“能源海绵”
  • 批准号:
    1638355
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Reliable and Resilient Transportation Networks against Correlated Infrastructure Disruptions
合作研究:规划可靠且有弹性的交通网络以应对相关基础设施中断
  • 批准号:
    1558889
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Pathway to a Driverless Highway Transportation System: A Behavior Analysis and Trajectory Control Approach
职业:无人驾驶公路运输系统之路:行为分析和轨迹控制方法
  • 批准号:
    1453949
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

低氧微环境下CHK2调控HIF-1α磷酸化-泛素化修饰网络促进非小细胞肺癌血管新生的机制研究
  • 批准号:
    82303535
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高阶谐振网络与复杂调制方式的谐振变换器统一多频率小信号建模理论研究
  • 批准号:
    52307196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于HMGB1/TLR4-小胶质细胞极化-重塑周围神经网络研究乳香-没药“化瘀通络”治疗神经病理性疼痛的作用及机制
  • 批准号:
    82304947
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PTEN上游uORF编码的小肽MP31破坏线粒体质控网络抑制恶性胶质瘤进展的机制探究
  • 批准号:
    82372694
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
乌梅总黄酮通过葡萄糖-丝氨酸代谢网络抑制小胶质细胞M1型极化干预帕金森病的作用机制研究
  • 批准号:
    82360963
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
  • 批准号:
    2228092
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
  • 批准号:
    2228092
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Small: Infusing Quantum Computing, Decomposition, and Learning for Addressing Cyber-Physical Systems Optimization Challenges
CPS:小型:融合量子计算、分解和学习来应对网络物理系统优化挑战
  • 批准号:
    2312086
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Small: Consistency vs. Availability in Cyber-Physical Systems
CPS:TTP 选项:小:网络物理系统中的一致性与可用性
  • 批准号:
    2233769
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Small: Formally Correct Deep Perception For Cyber-Physical Systems
CPS:小:形式上正确的网络物理系统深度感知
  • 批准号:
    2211146
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了