Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
基本信息
- 批准号:2312979
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NextG cellular networks must support a wide variety of emerging applications, such as augmented reality, autonomous vehicles and remote healthcare, which require radio access with latency, throughput and reliability guarantees hitherto unavailable. Simultaneously, the wireless environment is becoming increasingly dynamic over diverse spectrum bands, user mobility and variable traffic patterns. Complex cross layer interactions imply tractable models are unavailable, and a machine learning approach to optimal resource utilization is critical. This project first develops an open, simple and capable platform, entitled EdgeRIC that supports fine-grain decision making at multiple timescales across the cellular network stack, and second, develops a structured machine learning based approach over this platform that optimally utilizes all system resources to maximize diverse application performance. The project is enhanced by an education plan focusing on machine learning and wireless networking and coordinating workshops and tele-seminars for the research community and industry professionals to disseminate their ideas. Simultaneously, outreach in the form of summer camps and seminars for high school students focusing on machine learning enhances the impact of this project in STEM fields.The project aims at enabling intelligent decision making and control in cellular networks at realtime ( 1ms), while supporting training and adaptation at near-realtime (10ms - 1s) and non-realtime ( 1s). It brings together mathematical methods to develop and analyze reinforcement learning (RL) algorithms and systems development to integrate them into the cellular stack. The project addresses the key challenges of doing so via three main themes. The first focuses on realtime RL algorithms that schedule resources based on the relative priorities of applications, using the structure of the optimal policy to promote fast and scalable learning. The second theme focuses on robust and fast adaptation of these policies, which must operate over dynamic environments and application needs. The third theme addresses scalable learning to determine hierarchical policies operating across the network layers and sites. The themes all come together on a platform, entitled EdgeRIC for implementing multi-modal learning algorithms using the standardized OpenAIGym toolkit. The immediate impact of this project is in creating multi-timescale learning and control for the next generation of cellular networks. This project also advances the fundamental theory of meta and federated RL. The project supports seminars and summer camps for outreach, development of new courses focusing on machine learning for wireless communication, and coordination of workshops and tele-seminars for the research community and industry professionals to disseminate research ideas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NextG 蜂窝网络必须支持各种新兴应用,例如增强现实、自动驾驶汽车和远程医疗保健,这些应用需要具有迄今为止无法保证的延迟、吞吐量和可靠性的无线电接入。同时,无线环境在不同的频段、用户移动性和可变的流量模式上变得越来越动态。复杂的跨层交互意味着难以处理的模型不可用,而实现最佳资源利用的机器学习方法至关重要。 该项目首先开发一个开放、简单且功能强大的平台,名为 EdgeRIC,支持跨蜂窝网络堆栈的多个时间尺度的细粒度决策,其次,在该平台上开发基于结构化机器学习的方法,该方法可以最佳地利用所有系统资源最大限度地提高多样化的应用程序性能。 该项目通过一项以机器学习和无线网络为重点的教育计划得到加强,并为研究界和行业专业人士协调研讨会和远程研讨会以传播他们的想法。同时,针对关注机器学习的高中生以夏令营和研讨会的形式进行推广,增强了该项目在 STEM 领域的影响力。该项目旨在实现蜂窝网络中实时(1ms)的智能决策和控制,同时支持近实时(10ms - 1s)和非实时(1s)的训练和适应。 它汇集了数学方法来开发和分析强化学习 (RL) 算法和系统开发,以将它们集成到蜂窝堆栈中。 该项目通过三个主题解决了这样做的关键挑战。 第一个重点关注实时强化学习算法,该算法根据应用程序的相对优先级来调度资源,使用最优策略的结构来促进快速和可扩展的学习。 第二个主题侧重于这些策略的稳健和快速适应,这些策略必须在动态环境和应用程序需求下运行。 第三个主题涉及可扩展的学习,以确定跨网络层和站点运行的分层策略。 这些主题全部集中在一个名为 EdgeRIC 的平台上,用于使用标准化的 OpenAIGym 工具包实施多模式学习算法。 该项目的直接影响是为下一代蜂窝网络创建多时间尺度的学习和控制。 该项目还推进了元和联邦强化学习的基础理论。该项目支持举办外展研讨会和夏令营、开发专注于无线通信机器学习的新课程,以及为研究界和行业专业人士协调研讨会和远程研讨会以传播研究思想。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinesh Bharadia其他文献
SweepSense: Sensing 5 GHz in 5 Milliseconds with Low-cost Radios
SweepSense:利用低成本无线电在 5 毫秒内感测 5 GHz
- DOI:
10.1016/j.neucom.2020.04.103 - 发表时间:
2019-02-26 - 期刊:
- 影响因子:0
- 作者:
Yeswanth Guddeti;Raghav Subbaraman;Moein Khazraee;Aaron Schulman;Dinesh Bharadia - 通讯作者:
Dinesh Bharadia
Full-Duplex Wireless for (Joint-) Communication and Sensing
用于(联合)通信和传感的全双工无线
- DOI:
10.1109/esscirc55480.2022.9911367 - 发表时间:
2022-09-19 - 期刊:
- 影响因子:0
- 作者:
Hany Abolmagd;Raghav Subbaraman;Dinesh Bharadia;S. Shekhar - 通讯作者:
S. Shekhar
Windex: Realtime Neural Whittle Indexing for Scalable Service Guarantees in NextG Cellular Networks
Windex:用于 NextG 蜂窝网络中可扩展服务保证的实时神经 Whittle 索引
- DOI:
10.1016/j.econlet.2013.11.033 - 发表时间:
2024-06-04 - 期刊:
- 影响因子:2
- 作者:
Archana Bura;Ushasi Ghosh;Dinesh Bharadia;Srinivas Shakkottai - 通讯作者:
Srinivas Shakkottai
A Hierarchical Self-Interference Canceller for Full-Duplex LPWAN Applications Achieving 52–70-dB RF Cancellation
适用于全双工 LPWAN 应用的分层自干扰消除器,可实现 52-70dB 射频消除
- DOI:
10.1109/jssc.2022.3200369 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:5.4
- 作者:
Hany Abolmagd;Raghav Subbaraman;Omid Esmaeeli;Yeswanth Guntupalli;Ahmad Sharkia;Dinesh Bharadia;S. Shekhar - 通讯作者:
S. Shekhar
mmFlexible: Flexible Directional Frequency Multiplexing for Multi-user mmWave Networks
mmFlexible:用于多用户毫米波网络的灵活定向频率复用
- DOI:
10.1109/infocom53939.2023.10229065 - 发表时间:
2023-01-26 - 期刊:
- 影响因子:0
- 作者:
I. Jain;Rohith Reddy Vennam;Raghav Subbaraman;Dinesh Bharadia - 通讯作者:
Dinesh Bharadia
Dinesh Bharadia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinesh Bharadia', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
- 批准号:
2211805 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2232481 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: SpecScape: Enabling a Global Spectrum Observatory through Mobile, Wide-band Spectrum Sensing Kits and a Software Ecosystem
合作研究:CCRI:新:SpecScape:通过移动、宽带频谱传感套件和软件生态系统实现全球频谱观测站
- 批准号:
2213689 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2107613 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Small: Cross-Layer Interference Management: Bringing Interference Alignment to Reality
合作研究:SWIFT:小型:跨层干扰管理:将干扰调整变为现实
- 批准号:
2030245 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SpecEES: Spectrally-Efficient Near-Zero-Power IoT Connectivity with Existing Wi-Fi Infrastructure
SpecEES:与现有 Wi-Fi 基础设施的频谱效率近零功耗物联网连接
- 批准号:
1923902 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SpecEES: Spectrally-Efficient Near-Zero-Power IoT Connectivity with Existing Wi-Fi Infrastructure
SpecEES:与现有 Wi-Fi 基础设施的频谱效率近零功耗物联网连接
- 批准号:
1923902 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
靶向p47phox通过抑制NETs生成而减少深静脉血栓形成的分子机制研究
- 批准号:82300153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PTBP3/CCDC25轴研究中性粒细胞胞外诱捕网(NETs)在胃癌腹膜转移中的作用及健脾散结法的治疗机制
- 批准号:82305103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NETs通过m6A修饰lncRNA-H19调控内皮细胞铁死亡介导糖尿病足血管新生障碍的机制研究
- 批准号:82370497
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
三叶青多糖调控补体-血小板-NETs稳态平衡干预免疫血栓过度形成防治重症肺炎的作用机制研究
- 批准号:82374127
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
从中性粒细胞胞外诱捕网(NETs)触发的巨噬细胞“促炎极化”研究流感病毒性肺炎的免疫病理机制与麻杏石甘汤干预作用
- 批准号:82374266
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312834 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Conference: NSF NeTS PI Meeting - Spring 2023
协作研究:会议:NSF NeTS PI 会议 - 2023 年春季
- 批准号:
2309858 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant