Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
基本信息
- 批准号:2312666
- 负责人:
- 金额:$ 76.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Balancing the preservation of individual privacy and the utility of aggregate data for societal benefit is crucial in the modern data-driven world. In fields such as healthcare, education, and resource allocation, the responsible use of personal data can bring transformative changes and fuel the development of privacy- and fairness-guaranteed machine learning and artificial intelligence algorithms. This project aims to improve privacy-enhancing technologies (PETs) that uphold individual privacy while allowing comprehensive data analysis. The research will result in new methods that optimize PETs for privacy while minimizing their hidden and apparent costs, such as distortion and bias. Moreover, this project will also develop new methods for generating synthetic yet realistic data with privacy safeguards. Ultimately, this research will result in PETs that are more private, accurate, and fair. In practice, these improvements can impact a range of machine learning applications in industry, healthcare, and government. The project also promotes inclusivity by engaging diverse students through research internships and STEM events.The research is divided into four interconnected areas, each tackling a distinct aspect of PETs that ensure differential privacy (DP). The first area develops optimal privacy mechanisms, specifically for applications that require a large number of data processing steps, such as gradient descent-based training algorithms used in machine learning. The second area of focus is enhancing privacy accounting, aiming to derive accurate and computationally tractable methods that track DP guarantees using tools from information theory. The third area assesses the costs of privacy, scrutinizing not just the impact of DP on accuracy, but also fairness and arbitrariness in machine learning models trained with DP-ensuring algorithms. The final focus is on generating realistic synthetic data, which, while maintaining privacy, can be used for various statistical tasks. The project employs a diverse range of techniques from information theory, optimization, mathematical physics, and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代数据驱动的世界中,平衡个人隐私的保护和聚合数据对社会效益的利用至关重要。在医疗保健、教育和资源分配等领域,负责任地使用个人数据可以带来革命性的变化,并推动隐私和公平保证的机器学习和人工智能算法的发展。该项目旨在改进隐私增强技术(PET),在保护个人隐私的同时允许进行全面的数据分析。该研究将产生新方法,优化 PET 的隐私性,同时最大限度地减少其隐藏和明显的成本,例如失真和偏见。此外,该项目还将开发新方法来生成具有隐私保护的合成且真实的数据。最终,这项研究将使 PET 更加私密、准确和公平。实际上,这些改进可能会影响工业、医疗保健和政府中的一系列机器学习应用。该项目还通过研究实习和 STEM 活动吸引不同的学生来促进包容性。该研究分为四个相互关联的领域,每个领域都解决 PET 的一个独特方面,以确保差异隐私 (DP)。第一个领域开发最佳隐私机制,特别是针对需要大量数据处理步骤的应用程序,例如机器学习中使用的基于梯度下降的训练算法。第二个重点领域是加强隐私核算,旨在使用信息论工具导出准确且易于计算处理的方法来跟踪 DP 保证。第三个领域评估隐私成本,不仅审查 DP 对准确性的影响,还审查使用 DP 确保算法训练的机器学习模型的公平性和任意性。最后的重点是生成真实的合成数据,在保持隐私的同时,可用于各种统计任务。该项目采用了信息论、优化、数学物理和机器学习等多种技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Operational Approach to Information Leakage via Generalized Gain Functions
通过广义增益函数处理信息泄漏的操作方法
- DOI:10.1109/tit.2023.3341148
- 发表时间:2024-02
- 期刊:
- 影响因子:2.5
- 作者:Kurri, Gowtham R.;Sankar, Lalitha;Kosut, Oliver
- 通讯作者:Kosut, Oliver
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Kosut其他文献
VALID: a Validated Algorithm for Learning in Decentralized Networks with Possible Adversarial Presence
VALID:一种在可能存在对抗性的去中心化网络中进行学习的经过验证的算法
- DOI:
10.48550/arxiv.2405.07316 - 发表时间:
2024-05-12 - 期刊:
- 影响因子:0
- 作者:
Mayank Bakshi;Sara Ghasvarianjahromi;Yauhen Yakimenka;Allison Beemer;Oliver Kosut;Joerg Kliewer - 通讯作者:
Joerg Kliewer
Oliver Kosut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Kosut', 18)}}的其他基金
Collaborative Research: CIF: Medium: Do You Trust Me? Practical Approaches and Fundamental Limits for Keyless Authentication
合作研究:CIF:中:你相信我吗?
- 批准号:
2107526 - 财政年份:2021
- 资助金额:
$ 76.42万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: When Small Changes Have Big Impact: Improving Network Reliability and Security via Low-Rate Coordination
CIF:小:协作研究:当小变化产生大影响时:通过低速率协调提高网络可靠性和安全性
- 批准号:
1908725 - 财政年份:2019
- 资助金额:
$ 76.42万 - 项目类别:
Standard Grant
CAREER: Fundamental Security-Performance Tradeoffs for Active Attacks Against Communication Networks
职业:针对通信网络的主动攻击的基本安全性能权衡
- 批准号:
1453718 - 财政年份:2015
- 资助金额:
$ 76.42万 - 项目类别:
Continuing Grant
CIF: Small: A Framework for Low Latency Universal Compression with Privacy Guarantees
CIF:小型:具有隐私保证的低延迟通用压缩框架
- 批准号:
1422358 - 财政年份:2014
- 资助金额:
$ 76.42万 - 项目类别:
Standard Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 76.42万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 76.42万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 76.42万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 76.42万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 76.42万 - 项目类别:
Standard Grant