CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
基本信息
- 批准号:2411677
- 负责人:
- 金额:$ 65.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryMaterials used in real-world settings are frequently exposed to changes in temperature. For materials used in outdoor applications such as concrete, this is typically due to weather or seasonal changes. For materials used in devices such as computers or electronics, this is due to excess energy that results in heat. Thermal expansion is the response of a material to any change in temperature. The way a material responds to temperature impacts its ability to function. If the thermal expansion behavior of a material is not understood and controlled, failure or fracture is likely to occur as a result of temperature fluctuations. The chemical structures of the molecules and the bonds that hold a solid material together typically dictate the thermal expansion behaviors. The behaviors of materials like concrete are well-understood; however, analogous behaviors for organic (carbon)-based materials are more challenging to predict and design because these materials are held together by weaker forces. Organic materials are becoming more widely used in a variety of fields such as electronics. Balancing high material performance with ideal thermal expansion is critical to such applications. This CAREER project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, develops fundamental strategies for controlling the thermal expansion behaviors of organic materials. Specifically, thermal expansion is influenced through the use of dynamic groups, which respond to temperature changes by undergoing motion or by making and breaking the bonds that hold the material together. The strategies developed in this project are expected to influence the design and preparation of novel materials with predictable thermal expansion properties for use in technological applications that advance national prosperity. Integrated with the research plan is a holistic education, mentorship, and outreach program involving underrepresented groups at each education stage from middle school through graduate school. The activities include (1) development and implementation of an annual presentation on 'Thermal Expansion Around Us' at Tech Savvy – a STEM workshop for middle school girls, (2) a traveling lab experiment on molecular structures and solid-state properties for high school students in West Texas, and (3) a STEM career preparation workshop for upper-level undergraduate and graduate students.Technical SummaryThis CAREER project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, develops a fundamental understanding of thermal expansion (TE) behaviors in organic crystalline solids through synthesis of novel, dynamic solid-state materials with controllable and predictable TE behaviors. TE is the response of a material to a change in temperature. The chemical structures of the molecules and the interactions that hold the solid together typically dictate TE behavior. However, other mechanisms such as structural flexibility or motion can give rise to unexpected or unique TE. For inorganic or covalent network solids, intermolecular forces are strong, structural assembly is well-controlled in three dimensions, and TE is often predictable. On the other hand, purely organic molecular solids are held together in three dimensions by weaker, noncovalent interactions. Directing self-assembly of individual organic molecules into a solid structure with full control over the noncovalent interactions comprising all crystallographic dimensions is challenging. Noncovalent forces, motion, and flexibility all affect TE in organic molecular solids. Reliably directing, achieving, and controlling solid-state motion, self-assembly, and predicting their influence on TE remains challenging. This CAREER project develops fundamental knowledge and systematic strategies for controlling and tuning TE in organic molecular solids through (1) installation of functional groups capable of undergoing solid-state molecular motion and reliably turning motion on and off, (2) use of reversible solid-state covalent-bond-forming reactions to switch between large and near zero TE behaviors within a single solid, and (3) control over self-assembly of organic molecules in all three crystallographic dimensions using orthogonal noncovalent interactions. The work is expected to advance fundamental knowledge of solid-state motion, reactivity, self-assembly, and TE, and transform the design of functional solid-state materials that exhibit dynamic properties. The educational and outreach activities emphasize a STEM-powered approach to education and career preparation by engaging students in STEM activities at each stage of education from middle school through graduate school. This is achieved through (1) development and implementation of an annual presentation on 'Thermal Expansion Around Us' at Tech Savvy – a STEM workshop for middle school girls, (2) a traveling lab experiment on molecular structures and solid-state properties for high school students in West Texas, and (3) a STEM career preparation workshop for upper-level undergraduate and graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要对于混凝土等户外应用中使用的材料,这通常是由于天气或季节变化而导致的。对于计算机或电子设备等设备中使用的材料,这通常会受到温度变化的影响。热膨胀是由于能量过多而产生的热量。如果材料的热膨胀行为未被理解和控制,材料对温度的响应方式就会影响其功能。 ,故障或断裂很可能由于温度波动而发生。将固体材料结合在一起的分子的化学结构和键通常决定了混凝土等材料的热膨胀行为,但是有机材料(碳)的热膨胀行为也很容易理解。有机材料的预测和设计更具挑战性,因为这些材料通过较弱的力结合在一起,因此在电子等各种领域中得到更广泛的应用,平衡高材料性能与理想的热膨胀对于此类应用至关重要。 CAREER 项目,由 Solid 支持材料研究部的状态和材料化学项目开发了控制有机材料热膨胀行为的基本策略,具体来说,热膨胀是通过使用动态基团来影响的,动态基团通过运动或通过制造和制造来响应温度变化。该项目开发的策略预计将影响具有可预测热膨胀特性的新型材料的设计和制备,用于促进国家繁荣的技术应用,与研究计划相结合的是一项整体教育。涉及代表性不足群体的指导和外展计划从初中到研究生的每个教育阶段,这些活动包括 (1) 在 Tech Savvy 举办的“我们周围的热膨胀”年度演示——针对中学生的 STEM 研讨会;(2) 巡回实验室实验。为西德克萨斯州的高中生举办关于分子结构和固态特性的课程,以及 (3) 为高年级本科生和研究生举办的 STEM 职业准备研讨会。技术摘要此职业项目由德克萨斯州固态和材料化学项目支持的划分材料研究通过合成具有可控和可预测的热膨胀(TE)行为的新型动态固态材料,对有机晶体固体的热膨胀(TE)行为有了基本的了解。TE 是材料对温度变化的响应。分子结构和将固体结合在一起的相互作用通常决定了 TE 行为,但是,其他机制(例如结构灵活性或运动)可能会产生意想不到的或独特的 TE 对于无机或共价网络固体,分子间力很强,结构组装。是另一方面,纯有机分子固体通过较弱的非共价相互作用将单个有机分子自组装成固体结构,并且可以完全控制。包含所有晶体维度的非共价相互作用具有挑战性。非共价力、运动和灵活性都会影响有机分子固体中的 TE,并预测它们对固态运动、自组装的影响。 TE 仍然具有挑战性。该职业项目通过 (1) 安装能够进行固态分子运动并可靠地打开和关闭运动的官能团,(2) 使用控制和调节有机分子固体中的 TE 的基础知识和系统策略。可逆固态共价键形成反应,以在单个固体内的大TE行为和接近零TE行为之间切换,以及(3)使用正交非共价控制所有三个晶体维度中有机分子的自组装这项工作预计将推进固态运动、反应性、自组装和 TE 的基础知识,并改变具有动态特性的功能性固态材料的设计。教育和推广活动强调以 STEM 为动力。通过让学生参与从中学到研究生的各个教育阶段的 STEM 活动来实现教育和职业准备的方法 这是通过 (1) 在 Tech Savvy 上制定和实施“我们周围的热膨胀”年度演示文稿来实现的。中学 STEM 工作坊女孩,(2) 为西德克萨斯州高中生进行分子结构和固态特性的巡回实验室实验,以及 (3) 为高年级本科生和研究生举办 STEM 职业准备研讨会。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combining Molecular Motion with a 2,6-Diiodo BODIPY to Engineer Highly Anisotropic Thermomechanical Properties in Organic Binary and Ternary Molecular Materials
- DOI:10.1021/acs.cgd.3c01521
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Babak Tahmouresilerd;Jinchun Qiu;Gary C. George;Vivian Woh;M. Crawford Andrews;Shiva Moaven;D. Unruh;Kristin M. Hutchins;Anthony F. Cozzolino
- 通讯作者:Babak Tahmouresilerd;Jinchun Qiu;Gary C. George;Vivian Woh;M. Crawford Andrews;Shiva Moaven;D. Unruh;Kristin M. Hutchins;Anthony F. Cozzolino
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin Hutchins其他文献
Kristin Hutchins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin Hutchins', 18)}}的其他基金
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2045506 - 财政年份:2021
- 资助金额:
$ 65.14万 - 项目类别:
Continuing Grant
相似国自然基金
坚硬岩层破断诱发巷道冲击地压模拟的连续-非连续方法研究及应用
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
基于中厚板理论的坚硬厚顶板破断致灾机制与控制准则
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
裂隙性坚硬隧道围岩的岩爆机理及强度模型研究
- 批准号:51808458
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
3D打印栅格状胎体刀刃化唇面对金刚石钻头破碎坚硬岩层的影响机制研究
- 批准号:41872186
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
基于Rough集的坚硬顶板条件下煤与瓦斯突出预警机制研究
- 批准号:51874121
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
- 批准号:
2339634 - 财政年份:2024
- 资助金额:
$ 65.14万 - 项目类别:
Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 65.14万 - 项目类别:
Continuing Grant
CAREER: Solid-state quantum navigation and timekeeping
职业:固态量子导航和计时
- 批准号:
2339862 - 财政年份:2024
- 资助金额:
$ 65.14万 - 项目类别:
Continuing Grant
Assessing the Impact of Economic Policies on the Use of Pre-Exposure Prophylaxis in the United States
评估经济政策对美国使用暴露前预防的影响
- 批准号:
10698785 - 财政年份:2023
- 资助金额:
$ 65.14万 - 项目类别:
Bridges to the Baccalaureate at Cal State LA
通往加州州立大学洛杉矶分校学士学位的桥梁
- 批准号:
10716084 - 财政年份:2023
- 资助金额:
$ 65.14万 - 项目类别: