Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
基本信息
- 批准号:2406648
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-15 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Graph neural networks (GNNs), which translate the success of deep learning to graph-structured data, have numerous applications spanning from recommendation systems and fraud detection to medicine to finance. In such applications, the extent to which similar entities connect with each other---known as homophily---is unknown and cannot be computed empirically due to limited labeled data. Though homophily is common, it is not universal; there are important real-world settings where "opposites attract", leading to heterophily (low homophily). By moving beyond a reliance on graph homophily and introducing new GNN models, this project will generalize GNNs to work effectively in a wider range of domains. It will also help rectify some negative consequences of GNNs that are tailored to homophilous graphs, including biased, unfair, or erroneous predictions when applied to heterophilous data. Focusing on robustness, fairness, and explainability will help support accountable algorithmic decision-making in the domains where GNN models are employed. In addition to research, this project will support the training of a diverse cohort of undergraduate and graduate students at the University of Michigan, the New Jersey Institute of Technology, and Michigan State University via integration of this research in advanced courses, capstone projects, and other opportunities to directly contribute to this research program.The inability of GNNs to generalize their strong performance on homophilous or assortative graphs to many heterophilous graphs has attracted significant attention, and has led to empirical demonstration of the existence of "good heterophily", where GNNs can perform well. However, there is still limited understanding about the types of heterophily that are easy or difficult to handle with GNNs, especially beyond the limited, typically-studied settings (i.e., node classification on small homogeneous graphs). This project will advance the theoretical underpinnings of the interplay between different types of heterophily and GNNs, considering properties beyond just accuracy, which are necessary for deployment. Specifically, it will contribute: (a) New Theory: It will formally characterize the heterophily-related challenges of GNNs to provide a deeper understanding into "good" and "bad" heterophily, and enhance our understanding of "good" types of heterophily, which some architectures can model effectively, but have been vastly ignored until now. (b) New Models: Based on the new theory, it will introduce new GNN designs and architectures that not only have strong performance across different levels and types of heterophily, but are also robust, fair, and transparent, which are crucial for algorithmic decision-making. (c) New Applications: The project will also go beyond the traditional tasks and heterophilous network types investigated in the literature, and will include exploration of high-impact applications along with collaborators in academia and industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形神经网络(GNN)将深度学习的成功转化为图形结构化数据,具有从推荐系统和欺诈检测到医学到融资的许多应用程序。在这样的应用中,相似实体相互连接的程度(称为同质性)是未知的,由于标记的数据有限,因此无法通过经验计算。虽然同质性是普遍的,但它并不普遍。有重要的现实环境,“对方吸引”,导致异性恋(低同质性)。通过超越对图形同质图的依赖并引入新的GNN模型,该项目将推广GNN在更广泛的域中有效地工作。它还将有助于纠正针对同质图量身定制的GNN的一些负面后果,包括应用于异质数据时有偏见,不公平或错误的预测。专注于鲁棒性,公平性和解释性将有助于支持使用GNN模型的领域中负责任的算法决策。除研究外,该项目还将支持密歇根大学,新泽西大学技术研究所和密歇根州立大学的多样化的本科生和研究生培训,通过在高级课程,Capstone项目和其他机会中融合这项研究,以及其他机会直接为这项研究计划做出贡献。注意,并导致了对“良好异性恋”的存在的经验证明,GNN可以表现良好。但是,对GNN的异质性类型仍然有限,尤其是在有限的,通常研究的设置(即,在小均匀图上的节点分类)之外,很容易或难以处理。该项目将推进不同类型的异质和GNN之间相互作用的理论基础,考虑到不仅准确的属性,这是部署所必需的。具体而言,它将做出贡献:(a)新理论:它将正式表征GNN与异性相关的挑战,以对“好”和“坏”杂质提供更深入的了解,并增强我们对“良好”类型的异性恋类型的理解,这些类型的异性含量可以有效地模型,但是直到现在直到现在。 (b)新模型:基于新理论,它将引入新的GNN设计和体系结构,这些设计和体系结构不仅在不同级别和异性级别上具有强大的性能,而且还具有稳健,公平和透明,这对于算法决策至关重要。 (c)新应用:该项目还将超越文献研究中调查的传统任务和异性网络类型,并将包括探索高影响力应用程序以及学术界和行业的合作者。该奖项反映了NSF的法定任务,并认为通过基金会的知识分子优点和广泛的效果来评估NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Ma其他文献
Ju l 2 01 4 Some structures of Leibniz triple systems
Jul l 2 01 4 莱布尼茨三重系统的一些结构
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yao Ma;Liangyun Chen - 通讯作者:
Liangyun Chen
Novel phenomenon of negative permittivity in silicon-based PiN diodes induced by electron irradiation
电子辐照诱导硅基 PiN 二极管出现负介电常数的新现象
- DOI:
10.1016/j.spmi.2020.106755 - 发表时间:
2021 - 期刊:
- 影响因子:3.1
- 作者:
Yun Li;Min Gong;Zhimei Yang;Ping Su;Yao Ma;Sijie Fan;Mingmin Huang - 通讯作者:
Mingmin Huang
Immobilized Atrazine Degrading Bacteria by Different Material
不同材料固定化莠去津降解菌
- DOI:
10.1109/icbbe.2010.5517415 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Ying Zhang;Chunyan Li;Zhuo Diao;Shuyan Ma;Yao Ma - 通讯作者:
Yao Ma
Efficient and Accurate Design of Infrared and Laser-Compatible Stealth Metasurface Using Bidirectional Artificial Neural Network
使用双向人工神经网络高效准确地设计红外和激光兼容的隐形超表面
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Pengfei Zhang;Xiong Cheng;Yao Ma;Jun Liu;Liyan Zhu;Daying Sun;Xiaodong Huang - 通讯作者:
Xiaodong Huang
On generalized Jordan prederivations and generalized prederivations of Lie color algebras
关于广义乔丹预导子和李颜色代数的广义预导子
- DOI:
10.33044/revuma.v59n2a13 - 发表时间:
2018-08 - 期刊:
- 影响因子:0.5
- 作者:
Chenrui Yao;Yao Ma;Liangyun Chen - 通讯作者:
Liangyun Chen
Yao Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Ma', 18)}}的其他基金
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2406647 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII: CPS: Human-Centric Connected and Automated Vehicles for Sustainable Mobility
CRII:CPS:以人为本的互联和自动化车辆,实现可持续移动
- 批准号:
2153229 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
- 批准号:
2153326 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2212145 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
- 批准号:42377264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于III-V族半导体纳米结构阵列的短波红外偏振探测理论与方法研究
- 批准号:62305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高性能TM(I)-Ln(III)单分子磁体的可控合成与构效关系研究
- 批准号:22371031
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant