Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites

增材制造聚合物复合材料断裂的综合多尺度计算和实验研究

基本信息

  • 批准号:
    2309845
  • 负责人:
  • 金额:
    $ 40.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This project will create new computational capabilities using experimental investigations to understand fracture and failure in 3D printed polymer composites. 3D printing is transitioning from demonstrative prototypes to functional products that impact a wide range of industrial sectors. However, many polymer-based 3D printed parts are prone to fracture and failure. This limits their applications in load-bearing components. Various polymer composite filaments reinforced with particles and/or fibers are being developed to improve the performance of 3D printed components. The current research and development are hindered by the complex variabilities of 3D printing. It thus largely remains in a trial-and-error stage with insufficient scientific guidance. This project will develop a science-based strategy that combines computational modeling and simulations with an optimal suite of experiments. This approach helps to gain a fundamental understanding of multiscale fracture as well as to quantify uncertainties associated with 3D printed polymer composites. The new knowledge achieved through this research can develop new technologies for 3D printing of high-performance components. The outcomes of this research can be applied to a broad array of industries. The research will be complemented by educational and outreach activities. These include curriculum enhancements, hands-on 3D printing workshops, and STEM education programs that engage K-12 and underrepresented minority students.This project will take on the challenges of quantifying the process-structure-property-performance relationship and deriving multiscale fracture mechanics mechanisms for additively manufactured polymer composites. Although additive manufacturing is capable of printing parts with relatively complex geometries, several fundamental issues must be addressed before AM can advance to producing functional composites. Current limitations include microstructural defects due to strong thermal gradients induced during manufacturing, heterogeneous interface bonding conditions, and large fracture and failure performance variations. The research objectives of this project thus include: 1) developing direct mesoscale simulations capable of predicting thermo-mechanical-chemical coupling and fluid-structure interactions during the additive manufacturing process, which will address fundamental questions of how motions and deformations, temperature gradients, melting/solidification between filaments and reinforced particles/fibers interplay with one other in assocoation with micro-crack nucleation and propagation; 2) deriving multiscale modeling of fracture based on machine learning of micro-crack simulations and phase-field models of macro-crack predictions, with in-situ monitoring of manufacturing processes and multiscale experimental characterizations being used for direct model validations; and 3) developing an optimal model-based uncertainty quantification protocol that organizes computational and experimental activities to validate the model, investigate parameter sensitivities, and quantify process/property variations. The research outcomes will advance fundamental knowledge of the complex interplay between additive manufacturing process parameters and fracture behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过实验研究创建新的计算能力,以了解 3D 打印聚合物复合材料的断裂和失效。 3D 打印正在从示范原型过渡到影响广泛工业领域的功能性产品。然而,许多基于聚合物的 3D 打印零件容易断裂和失效。这限制了它们在承载部件中的应用。人们正在开发各种用颗粒和/或纤维增强的聚合物复合长丝,以提高 3D 打印组件的性能。目前的研究和开发受到3D打印复杂多变性的阻碍。因此,它在很大程度上仍处于试错阶段,科学指导不足。该项目将开发一种基于科学的策略,将计算建模和模拟与一套最佳实验相结合。这种方法有助于获得对多尺度断裂的基本了解,并量化与 3D 打印聚合物复合材料相关的不确定性。通过这项研究获得的新知识可以开发高性能组件 3D 打印的新技术。这项研究的成果可以应用于广泛的行业。该研究将得到教育和外展活动的补充。其中包括课程改进、实践 3D 打印研讨会以及吸引 K-12 和代表性不足的少数族裔学生的 STEM 教育计划。该项目将应对量化工艺-结构-性能关系和推导多尺度断裂力学机制的挑战用于增材制造的聚合物复合材料。尽管增材制造能够打印具有相对复杂几何形状的零件,但在增材制造能够生产功能复合材料之前,必须解决几个基本问​​题。目前的局限性包括由于制造过程中产生的强热梯度而产生的微观结构缺陷、异质界面粘合条件以及大的断裂和失效性能变化。因此,该项目的研究目标包括:1)开发能够预测增材制造过程中热-机械-化学耦合和流体-结构相互作用的直接介观模拟,这将解决运动和变形、温度梯度、熔化等基本问题。 /长丝和增强颗粒/纤维之间的凝固相互作用,与微裂纹的成核和扩展相关; 2)基于微裂纹模拟的机器学习和宏观裂纹预测的相场模型推导断裂的多尺度模型,并使用制造过程的现场监测和多尺度实验表征来进行直接模型验证; 3) 开发基于最佳模型的不确定性量化协议,组织计算和实验活动来验证模型、研究参数敏感性并量化过程/特性变化。研究成果将增进对增材制造工艺参数和断裂行为之间复杂相互作用的基础知识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Li其他文献

On the Effectiveness of Distillation in Mitigating Backdoors in Pre-trained Encoder
关于蒸馏在减少预训练编码器后门方面的有效性
  • DOI:
    10.48550/arxiv.2403.03846
  • 发表时间:
    2024-03-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingxu Han;Shenghan Huang;Ziqi Ding;Weisong Sun;Yebo Feng;Chunrong Fang;Jun Li;Hanwei Qian;Cong Wu;Quanjun Zhang;Yang Liu;Zhenyu Chen
  • 通讯作者:
    Zhenyu Chen
Associations of prenatal blood pressure trajectory and variability with child neurodevelopment at 2 years old
产前血压轨迹和变异性与 2 岁时儿童神经发育的关联
  • DOI:
    10.1186/s12916-024-03439-3
  • 发表时间:
    2024-05-30
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Luli Xu;Jiayi Cheng;Xiaohan Dong;Menglan Guo;Kai Chen;Xiaoxuan Fan;Xiaofeng Mu;Yuji Wang;Zhiguo Xia;Jun Li;Youjie Wang;Chao Xiong;Aifen Zhou
  • 通讯作者:
    Aifen Zhou
Spectral–Spatial Classification of Hyperspectral Data Using Loopy Belief Propagation and Active Learning
使用循环置信传播和主动学习对高光谱数据进行光谱空间分类
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Li;J. Bioucas;Antonio J. Plaza
  • 通讯作者:
    Antonio J. Plaza
Presence of Maximal Characteristic Time in Photoluminescence Blinking of MAPbI3 Perovskite
MAPbI3 钙钛矿光致发光闪烁中存在最大特征时间
  • DOI:
    10.1002/aenm.202102449
  • 发表时间:
    2021-10-13
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Sudipta Seth;Eduard A. Podshivaylov;Jun Li;M. Gerhard;Ale;er Kiligaridis;er;P. Frantsuzov;I. Scheblykin
  • 通讯作者:
    I. Scheblykin
Osimertinib for Chinese advanced non-small cell lung cancer patients harboring diverse EGFR exon 20 insertion mutations.
奥希替尼用于治疗携带多种 EGFR 外显子 20 插入突变的中国晚期非小细胞肺癌患者。
  • DOI:
    10.1016/j.lungcan.2020.11.027
  • 发表时间:
    2020-12-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Guangjian Yang;Jun Li;Haiyan Xu;Yang Sun;Liu Liu;Hong;Lu Yang;Y. Zhang;Guo;Yan Wang
  • 通讯作者:
    Yan Wang

Jun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Li', 18)}}的其他基金

Discovery Projects - Grant ID: DP210101100
发现项目 - 拨款 ID:DP210101100
  • 批准号:
    ARC : DP210101100
  • 财政年份:
    2021
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Discovery Projects
Explore Electrocatalysis to Improve the Cathode Performance in Li-S Batteries
探索电催化提高锂硫电池正极性能
  • 批准号:
    2054754
  • 财政年份:
    2021
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
  • 批准号:
    2101388
  • 财政年份:
    2020
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Offline and Online Change-point Analysis for Large-scale Time Series Data
大规模时间序列数据的离线和在线变点分析
  • 批准号:
    1916239
  • 财政年份:
    2019
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Continuing Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
  • 批准号:
    1910447
  • 财政年份:
    2019
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
SUSCHEM: Exploring Specific Heating in Microwave-assisted Synthesis of Hierarchical Hybrid Nanomaterials for Future Sustainable Batteries
SUSCHEM:探索微波辅助合成未来可持续电池的分层混合纳米材料中的比热
  • 批准号:
    1707585
  • 财政年份:
    2017
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
A Novel Fuel Cell Catalyst and Support Architecture Based on Edge-site Pyridinic Nitrogen-Doping on Vertically Aligned Conical Carbon Nanofibers
基于垂直排列锥形碳纳米纤维边缘位吡啶氮掺杂的新型燃料电池催化剂和支撑结构
  • 批准号:
    1703263
  • 财政年份:
    2017
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
CAREER: Genetic and Molecular Mechanisms of Parasite Infection in Insects
职业:昆虫寄生虫感染的遗传和分子机制
  • 批准号:
    1742644
  • 财政年份:
    2017
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Continuing Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
  • 批准号:
    1564348
  • 财政年份:
    2016
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
CAREER: Genetic and Molecular Mechanisms of Parasite Infection in Insects
职业:昆虫寄生虫感染的遗传和分子机制
  • 批准号:
    1453287
  • 财政年份:
    2015
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于多尺度计算模型设计仿I型胶原蛋白的纳米纤维
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
基于多尺度计算与表征研究高介稳多晶型阿利特水化机理
  • 批准号:
    52072171
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于多计算模型耦合的铸造充型过程三相流多尺度数值模拟研究
  • 批准号:
    51574176
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
时间密集型空间大数据实时计算关键方法研究——以精细气象预报产品快速生成为例
  • 批准号:
    41301438
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
海洋场景的混合型建模与绘制的关键技术研究
  • 批准号:
    61272302
  • 批准年份:
    2012
  • 资助金额:
    81.0 万元
  • 项目类别:
    面上项目

相似海外基金

AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning
AIM-AI:通过深度学习绘制阿尔茨海默病的可操作、集成和多尺度遗传图谱
  • 批准号:
    10668829
  • 财政年份:
    2023
  • 资助金额:
    $ 40.53万
  • 项目类别:
Identification and Modeling of Interphase in Cementitious Mixtures through Integrated Experimental-Computational Multiscale Approach
通过综合实验计算多尺度方法识别和建模水泥混合物中的界面
  • 批准号:
    1635055
  • 财政年份:
    2016
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Experimental and Computational, Multiscale Study of Geopolymers for Next Generation Soil Improvement
合作研究:用于下一代土壤改良的地质聚合物的综合实验和计算、多尺度研究
  • 批准号:
    1405745
  • 财政年份:
    2013
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Experimental and Computational, Multiscale Study of Geopolymers for Next Generation Soil Improvement
合作研究:用于下一代土壤改良的地质聚合物的综合实验和计算、多尺度研究
  • 批准号:
    1301048
  • 财政年份:
    2013
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Experimental and Computational, Multiscale Study of Geopolymers for Next Generation Soil Improvement
合作研究:用于下一代土壤改良的地质聚合物的综合实验和计算、多尺度研究
  • 批准号:
    1301070
  • 财政年份:
    2013
  • 资助金额:
    $ 40.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了