Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties

多项式插值、对称理想和 Lefschetz 属性

基本信息

  • 批准号:
    2401482
  • 负责人:
  • 金额:
    $ 33.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award provides support for research in commutative algebra, with connections to algebraic geometry. Within this framework, commutative algebra investigates systems of polynomial equations whose solutions form geometric objects, such as curves and surfaces. The process of finding a curve or surface passing through a given set of points is commonly referred to as interpolation. Polynomial interpolation finds widespread applications in scientific disciplines such as data analysis, numerical analysis, computer graphics, and mathematical modeling. This project specifically focuses on higher order polynomial interpolation in situations when the underlying data exhibits symmetry. More broadly, it aims to analyze systems of polynomial equations equipped with symmetry using tools from commutative algebra. In addition to these contributions, the principal investigator will lead groups of undergraduate students in summer research, coordinate an undergraduate research hub at their institution, mentor graduate students and postdoctoral scholars, and organize events that support mathematicians from diverse groups.The PI will investigate three topics in commutative algebra generating current excitement: symbolic powers of ideals with applications to higher order polynomial interpolation, homological properties of symmetric ideals, and the algebraic Lefschetz property strengthened by the Hodge-Riemann relations. Symbolic powers of ideals encompass polynomials vanishing to a higher order on a given algebraic variety. The project will explore algebraic properties of symbolic power ideals endowed with additional structure encoding either symmetries of the underlying variety or other combinatorial information. Homological and enumerative properties for further classes of symmetric ideals will also be elucidated. Furthermore, the investigation will turn to graded Artinian Gorenstein algebras, serving as algebraic analogues for the cohomology rings of smooth projective algebraic varieties. While every cohomology ring of a smooth complex projective variety satisfies the Lefschetz theorems and Hodge-Riemann relations, the project aims to identify which Artinian Gorenstein algebras satisfy analogous algebraic properties.This project is jointly funded by the Algebra and Number Theory program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为与代数几何相关的交换代数研究提供支持。在此框架内,交换代数研究多项式方程组,其解形成几何对象,例如曲线和曲面。查找通过给定点集的曲线或曲面的过程通常称为插值。多项式插值在数据分析、数值分析、计算机图形学和数学建模等科学学科中有着广泛的应用。该项目特别关注基础数据呈现对称性的情况下的高阶多项式插值。更广泛地说,它的目标是使用交换代数的工具来分析具有对称性的多项式方程组。 除了这些贡献之外,首席研究员还将领导本科生小组进行暑期研究,协调所在机构的本科生研究中心,指导研究生和博士后学者,并组织支持来自不同群体的数学家的活动。 PI 将调查三个当前令人兴奋的交换代数主题:理想的符号幂及其在高阶多项式插值中的应用、对称理想的同调性质以及霍奇-黎曼强化的代数 Lefschetz 性质关系。理想的符号幂包含在给定代数簇上消失到更高阶的多项式。该项目将探索符号权力理想的代数属性,该符号权力理想具有编码基础品种的对称性或其他组合信息的附加结构。还将阐明更多类别的对称理想的同调和枚举性质。此外,研究将转向分级的 Artinian Gorenstein 代数,作为平滑射影代数簇的上同调环的代数类似物。虽然平滑复射影簇的每个上同调环都满足 Lefschetz 定理和 Hodge-Riemann 关系,但该项目旨在确定哪些 Artinian Gorenstein 代数满足类似的代数性质。该项目由代数与数论计划和既定计划共同资助刺激竞争性研究 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandra Seceleanu其他文献

Alexandra Seceleanu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandra Seceleanu', 18)}}的其他基金

Conference: Women in Commutative Algebra II
会议:交换代数中的女性 II
  • 批准号:
    2324929
  • 财政年份:
    2023
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Symbolic Powers and Lefschetz Properties: Geometric and Homological Aspects
符号幂和 Lefschetz 性质:几何和同调方面
  • 批准号:
    2101225
  • 财政年份:
    2021
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Conference on Unexpected and Asymptotic Properties of Projective Varieties
射影簇的意外和渐近性质会议
  • 批准号:
    1953096
  • 财政年份:
    2020
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Central States Mathematics Undergraduate Research Conferences
合作提案:中部各州数学本科生研究会议
  • 批准号:
    1811000
  • 财政年份:
    2018
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Symbolic Powers, Configurations of Linear Spaces, and Applications
符号幂、线性空间的配置及应用
  • 批准号:
    1601024
  • 财政年份:
    2016
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant

相似国自然基金

PDC刀具结构界面疲劳裂纹与扩展分析的双层插值边界面法研究
  • 批准号:
    12302270
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
稀疏插值的纠错理论、算法及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
青藏高原东缘不同空间尺度的降水海拔梯度特征及其在降水插值中的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有界区域及流形上的散乱数据拟插值理论及其应用
  • 批准号:
    12271002
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于双层插值边界面法的完整实体点焊结构疲劳裂纹扩展机理与寿命预测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
  • 批准号:
    2338345
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains
线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题
  • 批准号:
    2247429
  • 财政年份:
    2023
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Developing a new estimation method of wide-are genetic diversity using spatial interpolation
利用空间插值开发一种新的大范围遗传多样性估计方法
  • 批准号:
    22KJ3108
  • 财政年份:
    2023
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
  • 批准号:
    551992-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Alliance Grants
Interpolation Techniques for Particle-In-Cell Methods
细胞内粒子方法的插值技术
  • 批准号:
    569325-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了