Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas

合作研究:非平衡等离子体中超越热力学第一定律的能量转换

基本信息

  • 批准号:
    2308669
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This award supports a collaborative effort at West Virginia University and the University of New Hampshire to study energy conversion in weakly collisional plasmas. One of the most challenging problems in the study of plasmas - gases hot enough that electrons come apart from the atoms - is understanding how energy is converted between electromagnetic fields and the thermal energy of the plasma, which is the energy associated with random motion of the electrically charged particles. This is an important problem across many types of plasmas, including plasmas in space and the very hot plasmas that are used in fusion energy development. These plasmas, where collisions between particles are very rare, are most often far from local thermodynamic equilibrium (LTE), which means that one cannot even define a temperature in the traditional sense. This project builds on a recent result quantifying energy conversion in non-LTE plasmas to perform the first systematic study of the non-LTE energy conversion in weakly collisional plasmas.The project will employ state-of-the-art particle-in-cell (PIC) simulations and satellite data from the Magnetospheric Multiscale (MMS) mission. Parametric simulations of two-dimensional magnetic reconnection and turbulence will be used to understand the dependence of thermal energy conversion on ambient plasma parameters. Secondary islands and flux ropes will be studied in two-dimensional and three-dimensional magnetic reconnection since they are known to be sites of particle acceleration and non-LTE dynamics. Finally, the theoretical formalism will be generalized to account for energy in both random motion and bulk motion and it will be used to study energy conversion in two-dimensional reconnection and turbulence. The project will directly contribute to the study of energy conversion in eruptive flares in the solar atmosphere, geomagnetic substorms that produce aurora and space weather impacts, and the heating of the solar wind; it will also set the stage for application in other areas of plasma science, including high energy density and fusion plasmas. The collaborative award is co-funded by the Plasma Physics program in the Division of Physics and the Magnetospheric Physics program in the Division of Atmospheric and Geospace Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持西弗吉尼亚大学和新罕布什尔大学的合作研究弱碰撞等离子体中的能量转换。 等离子体研究中最具挑战性的问题之一(气体温度足以使电子与原子分离)是了解能量如何在电磁场和等离子体的热能之间转换,等离子体的热能是与等离子体随机运动相关的能量。带电粒子。 这是许多类型等离子体的一个重要问题,包括太空等离子体和聚变能开发中使用的高温等离子体。 这些等离子体中粒子之间的碰撞非常罕见,通常远离局部热力学平衡(LTE),这意味着人们甚至无法定义传统意义上的温度。该项目以最近量化非 LTE 等离子体中能量转换的结果为基础,对弱碰撞等离子体中的非 LTE 能量转换进行了首次系统研究。该项目将采用最先进的细胞内粒子( PIC)模拟和来自磁层多尺度(MMS)任务的卫星数据。 二维磁重联和湍流的参数模拟将用于了解热能转换对环境等离子体参数的依赖性。次级岛和磁绳将在二维和三维磁重联中进行研究,因为它们已知是粒子加速和非 LTE 动力学的场所。最后,理论形式将被推广到解释随机运动和整体运动中的能量,并将用于研究二维重联和湍流中的能量转换。 该项目将直接有助于研究太阳大气中爆发性耀斑的能量转换、产生极光和空间天气影响的地磁亚暴以及太阳风的加热;它还将为等离子体科学其他领域的应用奠定基础,包括高能量密度和聚变等离子体。 该合作奖由物理部的等离子体物理项目和大气与地球空间科学部的磁层物理项目共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Cassak其他文献

Paul Cassak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Cassak', 18)}}的其他基金

FDSS: Faculty Development in a Multifaceted Geospace Program at West Virginia University
FDSS:西弗吉尼亚大学多方面地理空间项目的教师发展
  • 批准号:
    1936251
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Using Kinetic Entropy to Understand Dissipation in Reconnection and Turbulence
使用动熵来理解重联和湍流中的耗散
  • 批准号:
    1804428
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
GEM: Global versus Local Control of Solar Wind-Magnetospheric Coupling
GEM:太阳风磁层耦合的全局控制与局部控制
  • 批准号:
    1602769
  • 财政年份:
    2017
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHINE: Observational and Theoretical Investigation of Solar Flare Ribbon Elongation
合作研究:SHINE:太阳耀斑带伸长的观测和理论研究
  • 批准号:
    1460037
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAREER: The Effect of Shear Flow on the Scaling of Magnetic Reconnection and Solar Wind-Magnetospheric Coupling
职业:剪切流对磁重联和太阳风磁层耦合尺度的影响
  • 批准号:
    0953463
  • 财政年份:
    2010
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
The Theory of Magnetic Reconnection Onset: Three Dimensional and Diamagnetic Effects
磁重联起始理论:三维和抗磁效应
  • 批准号:
    0902479
  • 财政年份:
    2009
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于细胞活力敏感AIE荧光探针的肿瘤类器官药敏试验新方法及其响应机制研究
  • 批准号:
    82302647
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
组蛋白乙酰转移酶GCN5调控糖脂代谢促进胶质母细胞瘤干细胞活力的机制与功能研究
  • 批准号:
    82373095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多时空维度下地铁域环境对地下公共空间活力的影响机理研究
  • 批准号:
    52308387
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市夜间日常生活区的演进过程、活力机制与更新治理路径研究
  • 批准号:
    52378053
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
山地社区公共空间驻留活力的时空分布特征与影响机制研究
  • 批准号:
    52308007
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339061
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了