Parabolic and elliptic boundary value and free boundary problems

抛物线和椭圆边值以及自由边界问题

基本信息

  • 批准号:
    2349846
  • 负责人:
  • 金额:
    $ 24.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This project is concerned with the theory of boundary value problems and free boundary problems for elliptic and parabolic partial differential equations. Such equations arise, for example, in the mathematical theory of heat conduction: an equation of elliptic type describes steady state (equilibrium) temperature distributions and a related parabolic equation governs heat conduction in the time-evolutive case. In a boundary value problem, one uses mathematical knowledge of either 1) the temperature distribution on the boundary (i.e., perimeter) of some region in space (or of some evolving region in space-time) or 2) the heat flux (the rate at which heat flows across the boundary), to deduce information about the internal temperature distribution inside the region. In free boundary problems, one uses simultaneous knowledge of both the boundary temperature distribution and the heat flux to deduce information about the geometry of the region and its boundary. A central goal of this project is to understand the interplay between analytic information and geometry. This project provides research training opportunities for graduate students.The project has three main areas of focus: 1) to find a geometric characterization of the space-time domains for which the Dirichlet (or initial-Dirichlet) problem is solvable for the heat equation with singular (p-integrable) data, and to study related free boundary problems. The PI and coauthors have previously treated such problems in the steady state (elliptic) setting; in the present project, the PI seeks to treat the more difficult time-evolutive case. 2) to solve the Kato square root problem for elliptic equations in non-divergence form. The solution of the Kato problem for divergence form elliptic operators has led to significant progress in the theory of boundary value problems for divergence form equations. As a first step towards opening up the analogous theory in the nondivergence setting, the PI plans to treat the Kato problem for non-divergence elliptic operators. 3) to solve the Dirichlet problem in Lipschitz domains for non-symmetric divergence from elliptic equations with periodic coefficients. A primary motivation for the study of operators with periodic coefficients is their applicability to the theory of homogenization, which in turn provides a mathematical model for materials with periodic microstructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及边界价值问题的理论和椭圆形和抛物线部分微分方程的自由边界问题。例如,在热传导的数学理论中出现了这样的方程:椭圆类型的方程描述了稳态(平衡)温度分布,而相关的抛物线方程则控制了及时的情况下的热传导。在边界价值问题中,人们使用数学知识1)1)在空间中某些区域(或时空中某些不断发展的区域)边界上的温度分布(即周围)或2)热通量(速率在其中热流过边界),以推断有关该地区内部温度分布的信息。在自由边界问题中,一个人同时了解边界温度分布和热通量的知识来推断有关该地区几何形状及其边界的信息。该项目的一个核心目标是了解分析信息和几何形状之间的相互作用。该项目为研究生提供了研究培训机会。该项目具有三个主要的重点领域:1)找到对时空域的几何表征,该域(或初始 - 迪里奇莱特)问题可用于使用该域,可用于加热方程。单数(可P综合)数据,并研究相关的自由边界问题。 PI和合着者以前在稳态(椭圆形)设置中处理过此类问题。在本项目中,PI试图治疗更困难的时地案例。 2)以非差异形式解决Kato Square Root问题。 Kato问题的解决方案的解决方案椭圆形操作员的解决方案在差异形式方程的边界价值问题理论中取得了重大进展。作为在非散发环境中开放类似理论的第一步,PI计划为非差异椭圆运算符治疗Kato问题。 3)解决Lipschitz结构域中的Dirichlet问题,以与具有周期性系数的椭圆方程相对差异。 具有周期性系数的运营商研究的主要动机是它们适用于均质理论,这又为具有定期微观结构的材料提供了数学模型。该奖项反映了NSF的法定任务,并被认为是通过使用评估来支持的,基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Hofmann其他文献

Steven Hofmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Hofmann', 18)}}的其他基金

International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Standard Grant
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
  • 批准号:
    2000048
  • 财政年份:
    2020
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Standard Grant
Analysis in Missouri: a Midwestern Symposium
密苏里州的分析:中西部研讨会
  • 批准号:
    1901871
  • 财政年份:
    2019
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Standard Grant
Rectifiability and Elliptic Partial Differential Equations
可修正性和椭圆偏微分方程
  • 批准号:
    1664047
  • 财政年份:
    2017
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Continuing Grant
Uniform Rectifiability and Elliptic Equations
一致可整流性和椭圆方程
  • 批准号:
    1361701
  • 财政年份:
    2014
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Continuing Grant
Uniform rectifiability, Singular Integrals and Harmonic Measure
均匀可整流性、奇异积分和谐波测量
  • 批准号:
    1101244
  • 财政年份:
    2011
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Continuing Grant
Tb Theorems, Singular Integrals, Poisson Kernels, and Regularity of Boundaries
Tb 定理、奇异积分、泊松核和边界正则性
  • 批准号:
    0801079
  • 财政年份:
    2008
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Continuing Grant
Problems in harmonic analysis
谐波分析中的问题
  • 批准号:
    0245401
  • 财政年份:
    2003
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Continuing Grant
Conference on Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程会议
  • 批准号:
    0222187
  • 财政年份:
    2002
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
  • 批准号:
    0088920
  • 财政年份:
    2000
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Standard Grant

相似国自然基金

低对称性椭圆形磁性纳米线的制备与磁性研究
  • 批准号:
    12275114
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
塑料排水板地基精细固结理论及优化设计方法
  • 批准号:
    51878185
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
椭圆形FRP-混凝土-钢双壁空心管柱力学性能及设计方法研究
  • 批准号:
    51778102
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
一些椭圆形方程反问题的Tikhonov正则化方法的收敛速度
  • 批准号:
    11701205
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
椭圆形FRP-混凝土-钢组合空心柱的截面优化和抗震性能研究
  • 批准号:
    51608263
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
  • 批准号:
    417627993
  • 财政年份:
    2019
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Research Grants
Parabolic methods for elliptic boundary value problems
椭圆边值问题的抛物线方法
  • 批准号:
    DP180100431
  • 财政年份:
    2018
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Discovery Projects
Boundary regularity for elliptic and parabolic equations
椭圆方程和抛物方程的边界正则性
  • 批准号:
    18J00965
  • 财政年份:
    2018
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Singular Integrals, Smoothness Spaces, and Optimal Estimates for Elliptic and Parabolic Boundary Value Problems
椭圆和抛物线边值问题的奇异积分、平滑空间和最优估计
  • 批准号:
    0400639
  • 财政年份:
    2004
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Standard Grant
A synthetic study of positive solutions to elliptic and parabolic partial differential equations
椭圆型和抛物型偏微分方程正解的综合研究
  • 批准号:
    13440042
  • 财政年份:
    2001
  • 资助金额:
    $ 24.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了