REU Site: Quantum Machine Learning Algorithm Design and Implementation

REU 站点:量子机器学习算法设计与实现

基本信息

  • 批准号:
    2349567
  • 负责人:
  • 金额:
    $ 35.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Quantum Computing (QC) promises to accelerate information processing and solve highly complex massive data problems. This three-year REU site will recruit and train nine undergraduate students each summer and engage them in research endeavors on the design of quantum signal processing and quantum machine learning circuits and simulations. The investigators, along with a team of faculty advisors, will supervise a series of multidisciplinary research projects in quantum AI and quantum Digital Signal Processing (DSP). In addition to the planned REU projects, the investigators of this project will organize a series of industry-university collaborative training activities for the students. This REU features multidisciplinary synergies across different research labs that provide access to unique quantum simulation software, quantum physics and networking facilities, and quantum machine learning circuit design for several applications including health, sustainability, and security. Specific applications include audio recognition, image understanding, encryption and solar energy systems. The program will also include crosscutting professional development, modules and workshops in public speaking, policy, ethics, patent development and outreach. Annual REU workshops will train students to communicate with stakeholders. The investigator team will use the NSF Education and Training Application (ETAP) system for recruitment of REU student participants. Local and national evaluation units including the Center for Evaluating the Research Pipeline (CERP) will be deployed for assessments that will provide feedback for program improvement. Local site evaluators will also assess REU goals annually using feedback from student participants, academic and industry mentors, and other stakeholders. The program engages minority-serving institutions and professional student chapters to broaden participation and enhance recruitment.The REU will address STEM problems associated with quantum information processing (QIP) and specifically quantum signal processing and quantum machine learning (QML). Key research and education problems include a) understanding the theory and statistics of Quantum bits (Qubits), b) introduction to quantum noise models, c) understanding of tradeoffs between Qubit precision and quantum noise, d) skill-building with programming quantum simulations, and e) laboratory access to unique QC facilities. The faculty investigators will organize project and mentorship activities including REU student mentorship by industry partners. The objectives of the proposed site are to a) introduce students to research practices by immersing them in government and industry projects, b) engage students in quantum machine learning research, c) motivate students to pursue QIP research careers and recruit them to graduate programs, and d) provide cross-cutting skills in presentation, ethics, and standards. The REU projects are designed to introduce students to an array of quantum information processing technologies that emphasize the design of quantum simulation circuits for: AI-based signal and data classification, signal analysis synthesis using the quantum Fourier transform, quantum cloud and edge computing, quantum networking, quantum image understanding, and quantum based encryption. During the same period, projects will train REU students to understand issues dealing with quantum noise and quantum precision, quantum bit (qubit) measurement methods and theoretical aspects of superposition and entanglement. The REU will achieve social impact through several mechanisms including cross-cutting training, workshops on public speaking and ethics, dissemination of quantum project results and outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算(QC)有望加速信息处理并解决高度复杂的大规模数据问题。这个为期三年的REU网站将每年夏天招募和培训九名本科生,并参与研究量子信号处理以及量子机器学习电路和模拟的研究。调查人员与教职顾问团队一起将监督一系列量子AI和量子数字信号处理(DSP)的多学科研究项目。 除了计划的REU项目外,该项目的调查人员还将为学生组织一系列行业 - 大学合作培训活动。此REU具有不同研究实验室的多学科协同作用,可访问独特的量子模拟软件,量子物理和网络设施以及针对多种应用,包括健康,可持续性和安全的量子机器学习电路设计。 特定的应用包括音频识别,图像理解,加密和太阳能系统。 该计划还将包括在公开演讲,政策,道德,专利发展和宣传方面的专业发展,模块和讲习班。年度REU研讨会将培训学生与利益相关者进行沟通。研究人员团队将使用NSF教育和培训应用程序(ETAP)系统来招募REU学生参与者。 包括评估研究管道(CERP)在内的本地和国家评估单位将用于评估,以提供计划改进的反馈。本地现场评估人员还将使用学生参与者,学术和行业导师以及其他利益相关者的反馈每年评估REU目标。该计划与少数族裔服务机构和专业学生章节互动,以扩大参与并增强招聘。REU将解决与量子信息处理(QIP)相关的STEM问题(QIP),特别是量子信号处理和量子机器学习(QML)。关键的研究和教育问题包括a)了解量子位的理论和统计数据(Qubits),b)量子噪声模型简介,c)理解量子精度和量子噪声之间的权衡,d)使用编程量子模拟的技能构建,以及e)实验室访问独特QC设施。教师调查人员将组织项目和指导活动,包括行业合作伙伴的REU学生指导。拟议网站的目标是a)介绍学生通过将他们浸入政府和行业项目中,b)让学生参与量子机器学习研究,c)激励学生从事QIP研究职业并招募他们以研究生课程,d)d)在演讲,伦理学,伦理学和标准方面提供交叉挑战技能。 REU项目旨在向学生介绍一系列量子信息处理技术,这些技术强调了:基于AI的信号和数据分类,使用量子傅立叶变换,量子云和边缘计算,量子网络,量子网络,量子图像理解和基于量子的加密来综合量子模拟电路,信号分析合成。在同一时期,项目将培训REU学生了解有关量子噪声和量子精度,量子位(Qubit)测量方法和叠加和纠缠的理论方面的问题。 REU将通过多种机制来实现社会影响,包括跨切割培训,公开演讲和道德的讲习班,量子项目成果的传播和推广。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Spanias其他文献

Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Synthesis Lectures on Algorithms and Software in Engineering #1
超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 工程算法和软件综合讲座
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Loizou;C. Pattichis;Eleni Loizou;Andreas Spanias
  • 通讯作者:
    Andreas Spanias
Adaptive noise cancellation using fast optimum block algorithms
使用快速最佳块算法的自适应噪声消除
Gradient projection-based channel equalization under sustained fading
  • DOI:
    10.1016/j.sigpro.2007.07.014
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Venkatraman Atti;Andreas Spanias;Kostas Tsakalis;Constantinos Panayiotou;Leon Iasemidis;Visar Berisha
  • 通讯作者:
    Visar Berisha
Introducing Quantum Computing in a Sophomore Signals and Systems Course
在大二信号与系统课程中介绍量子计算
  • DOI:
    10.1109/fie58773.2023.10343312
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Wang;Aradhita Sharma;Glen S. Uehara;Leslie Miller;Deep Pujara;W. Barnard;Jean Larson;Andreas Spanias
  • 通讯作者:
    Andreas Spanias
Quantum and Classical Machine Learning Algorithm Comparisons for Monitoring PV Array Faults with Emphasis to Shading Detection
用于监测光伏阵列故障的量子和经典机器学习算法比较,重点是阴影检测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaden McGuffie;Glen S. Uehara;Sameeksha Katoch;Andreas Spanias
  • 通讯作者:
    Andreas Spanias

Andreas Spanias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Spanias', 18)}}的其他基金

Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education
适用于本科教育的量子机器学习在线材料和软件模块
  • 批准号:
    2215998
  • 财政年份:
    2022
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring
MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件
  • 批准号:
    2019068
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
RET Site: Sensor, Signal and Information Processing Algorithms and Software
RET 站点:传感器、信号和信息处理算法和软件
  • 批准号:
    1953745
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
  • 批准号:
    2032114
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
IRES Track I: Sensors and Machine Learning for Solar Power Monitoring and Control
IRES Track I:用于太阳能监测和控制的传感器和机器学习
  • 批准号:
    1854273
  • 财政年份:
    2019
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Sensor, Signal and Information Processing Devices and Algorithms
REU 网站:传感器、信号和信息处理设备和算法
  • 批准号:
    1659871
  • 财政年份:
    2017
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
I/UCRC Phase II: ASU Research Site of the NSF Net-Centric and Cloud Software and Systems I/UCRC
I/UCRC 第二阶段:美国国家科学基金会 (NSF) 网络中心和云软件与系统的 ASU 研究站点 I/UCRC
  • 批准号:
    1540040
  • 财政年份:
    2016
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Image Modeling and Machine Learning Algorithms for Utility-Scale Solar Panel Monitoring
CPS:协同:用于公用事业规模太阳能电池板监控的图像建模和机器学习算法
  • 批准号:
    1646542
  • 财政年份:
    2016
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
I/UCRC: Workshops Promoting International USA-Mexico Collaborations in Sensors and Signal Processing
I/UCRC:促进美国-墨西哥在传感器和信号处理领域国际合作的研讨会
  • 批准号:
    1550393
  • 财政年份:
    2015
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules (SM3) for STEM Education
合作研究:STEM教育可扩展移动多学科模块(SM3)的集成开发
  • 批准号:
    1525716
  • 财政年份:
    2015
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant

相似国自然基金

硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
  • 批准号:
    82371901
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
中国恐龙骨骼化石时空分布综合研究
  • 批准号:
    42372030
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
  • 批准号:
    82371902
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
  • 批准号:
    82370790
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Quantum Algorithms and Optimization (QAO)
REU 网站:量子算法和优化 (QAO)
  • 批准号:
    2244512
  • 财政年份:
    2023
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Applying the Tools of Physics to Explore the Macroscopic, Microscopic, and Quantum Worlds
REU 网站:应用物理工具探索宏观、微观和量子世界
  • 批准号:
    2244433
  • 财政年份:
    2023
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Applying the Tools of Physics to Explore the Macroscopic, Microscopic, and Quantum Worlds
REU 网站:应用物理工具探索宏观、微观和量子世界
  • 批准号:
    1950744
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Quantum and Materials Physics
REU 网站:量子与材料物理
  • 批准号:
    1950282
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了