Conference: Groups Actions and Rigidity: Around the Zimmer Program

会议:团体行动和刚性:围绕 Zimmer 计划

基本信息

  • 批准号:
    2349566
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This NSF award provides support for US based participants to attend a sequence of workshops, to be held at Centre Internationale de Rencontres mathematique in Marseilles and the Insitut Henri Poincare in Paris in April-July 2024. These workshops are held in conjunction with a special semester Group actions and Rigidity: Around the Zimmer Program at IHP during this period. The goal of both the workshops and special semester are to bring together specialists working in a related cluster of timely and important topics in dynamics and geometry related to, actions of large groups or spaces with lots of symmetries. The primary purpose of the award is to provide travel funding to allow early career scholars from the US to participate in the workshops and the semester program.Highly symmetric manifolds traditionally play a central role in mathematics, ranging from number theory to dynamics to geometry. This research topic centers on a program put forward by Zimmer and Gromov to study manifolds with large groups of symmetries, with the general idea that such manifolds should arise from natural algebraic and geometric constructions. Investigations in this area are often spurred by sudden discovery of or deepening of connections to other areas of mathematics. Recent new developments have been occurring with breakneck speed. Particularly important have been deepening connections to low dimensional topology, to homogeneous and hyperbolic dynamics as well as novel connections to operator algebras, and to classical work on characterizations of Lie groups among connected topological groups. The concentrated activity around this special term and the workshops funded in part by this grant are needed to capture this momentum and spur further progress. Information about individual workshops and meetings can be found at https://indico.math.cnrs.fr/event/9043/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF奖为我们的参与者提供了支持,以参加一系列讲习班,将于2024年4月至7月在巴黎举行的Marseilles的Internationale de Rencontres Mathematique举行。 研讨会和特殊学期的目标是将专家汇集在一起​​,以相关的及时和重要主题为基础,在与大量对称性的大型团体或空间相关的动态和几何形状方面。该奖项的主要目的是提供旅行资金,以允许美国的早期职业学者参加研讨会和学期课程。传统上,高度对称的歧管在数学中起着核心作用,从数字理论到动态到几何学。该研究主题集中在Zimmer和Gromov提出的一项计划,以研究具有大量对称性的歧管,并以自然代数和几何结构产生这种歧管。突然发现或加深与其他数学领域的联系或加深该领域的调查通常受到刺激。最近的新事态发展速度已随着突破性的速度而发生。 尤其重要的是,与低维拓扑,与均质和双曲动力学以及与操作员代数的新连接以及有关连接拓扑组中谎言组的特征的经典作品的新连接加深了连接。需要围绕这个特殊术语的集中活动和部分由这笔赠款资助的研讨会来捕捉这一势头并刺激进一步的进步。有关个人研讨会和会议的信息,请参见https://indico.math.cnrs.fr/event/9043/.this Award反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

David Fisher其他文献

The Effect of Initial Apgar Score on the Birthweight-Specific Survival of the Very Low-Birthweight Infant
初始阿普加评分对极低出生体重婴儿出生体重特定生存率的影响
Mo1583 - Non-Invasive Medical Device for the Treatment of Chronic Constipation: Proof-of-Principle Study in Adults
  • DOI:
    10.1016/s0016-5085(18)32634-9
    10.1016/s0016-5085(18)32634-9
  • 发表时间:
    2018-05-01
    2018-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicholas J. Talley;Gerald J. Holtmann;Bridget R. Southwell;David Fisher;Natasha A. Koloski;Michael P. Jones
    Nicholas J. Talley;Gerald J. Holtmann;Bridget R. Southwell;David Fisher;Natasha A. Koloski;Michael P. Jones
  • 通讯作者:
    Michael P. Jones
    Michael P. Jones
Description of the UMass System as Used for MUC-6
用于 MUC-6 的 UMass 系统的描述
  • DOI:
    10.3115/1072399.1072412
    10.3115/1072399.1072412
  • 发表时间:
    1995
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Fisher;S. Soderland;F. Feng;W. Lehnert
    David Fisher;S. Soderland;F. Feng;W. Lehnert
  • 通讯作者:
    W. Lehnert
    W. Lehnert
55. Remote control CPAs delivery via cryonanoliposomes
  • DOI:
    10.1016/j.cryobiol.2015.05.061
    10.1016/j.cryobiol.2015.05.061
  • 发表时间:
    2015-08-01
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shannon N. Tessier;Semih Calamak;Maria Arampatzidou;David Fisher;David P. Eisenberg
    Shannon N. Tessier;Semih Calamak;Maria Arampatzidou;David Fisher;David P. Eisenberg
  • 通讯作者:
    David P. Eisenberg
    David P. Eisenberg
Dislocation of the distal carpal row
  • DOI:
    10.1016/j.injury.2007.04.018
    10.1016/j.injury.2007.04.018
  • 发表时间:
    2008-01-01
    2008-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Pennington;David Fisher;Guy Selmon
    Richard Pennington;David Fisher;Guy Selmon
  • 通讯作者:
    Guy Selmon
    Guy Selmon
共 20 条
  • 1
  • 2
  • 3
  • 4
前往

David Fisher的其他基金

The evolution and plasticity of social networks traits
社交网络特征的演变和可塑性
  • 批准号:
    NE/X013227/1
    NE/X013227/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Research Grant
    Research Grant
Rigidity in Dynamics and Geometry
动力学和几何中的刚性
  • 批准号:
    2246556
    2246556
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Rigidity in Dynamics and Geometry
动力学和几何中的刚性
  • 批准号:
    2208430
    2208430
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Group Actions and Rigidity
集体行动和僵化
  • 批准号:
    1906107
    1906107
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Standard Grant
    Standard Grant
New Analytic Techniques in Group Theory
群论中的新分析技术
  • 批准号:
    1607041
    1607041
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Standard Grant
    Standard Grant
New analytic techniques in group theory
群论中的新分析技术
  • 批准号:
    1308291
    1308291
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: New Analytic Techniques in Group Theory
职业:群论中的新分析技术
  • 批准号:
    0643546
    0643546
  • 财政年份:
    2007
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Group Actions, rigidity and geometry
群体行动、刚性和几何形状
  • 批准号:
    0541917
    0541917
  • 财政年份:
    2005
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Superrigidity, Actions on Manifolds and CAT(0) Geometry
超刚性、流形作用和 CAT(0) 几何
  • 批准号:
    0226121
    0226121
  • 财政年份:
    2002
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    9902411
    9902411
  • 财政年份:
    1999
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

水稻种传微生物组在植物抗病中的功能及作用机制
  • 批准号:
    32302462
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间转录组解析牦牛毛囊周期发育及其皮肤结构适应高寒环境的分子机制
  • 批准号:
    32302720
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
  • 批准号:
    32370477
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于空间代谢组学研究海马星形细胞Mysm1介导TCA循环及ATP产能在电针抗抑郁中的作用
  • 批准号:
    82305420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于基因组挖掘的新颖二倍半萜定向发现及逆转肿瘤多药耐药活性及作用机制研究
  • 批准号:
    82373755
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Groups, Actions, and Geometries
会议:群体、行动和几何
  • 批准号:
    2309427
    2309427
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Standard Grant
    Standard Grant
More Outside Your Door (MOYD)
更多户外活动 (MOYD)
  • 批准号:
    10621538
    10621538
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
Dynamical and descriptive aspects of groups and their actions
群体及其行为的动态和描述性方面
  • 批准号:
    2246684
    2246684
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Standard Grant
    Standard Grant
Community-engaged environmental monitoring for biowaste treatment transitions
社区参与生物废物处理过渡的环境监测
  • 批准号:
    10795523
    10795523
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
    $ 3.5万
  • 项目类别:
    Standard Grant
    Standard Grant