REU Site: Graph Learning and Network Analysis: from Foundations to Applications (GraLNA)
REU 网站:图学习和网络分析:从基础到应用 (GraLNA)
基本信息
- 批准号:2349369
- 负责人:
- 金额:$ 37.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project establishes a new Research Experiences for Undergraduates (REU) Site hosted by the Department of Computer Science at UNC Greensboro. Ten students will receive research training each summer in the foundations of graph machine learning and network analysis and their concrete applications in real-life networks. Graphs and networks have become ubiquitous in various scientific disciplines ranging from the Internet of Things, online social networks, brain networks, and molecules to protein-protein interaction networks. Analysis of large-scale networks can bring significant advances to our understanding of complex systems. Existing methods are purely empirical or lack in-depth foundational exploration, thus limited in processing complex graph and network data. This project aims to provide students the opportunity to undertake cutting-edge research in graphs and networks at a major research and minority serving institute. The research training on Graph Learning and Network Analysis will contribute to developing a competitive next-generation network and AI workforce. Through various activities such as orientation workshops, invited lectures, hands-on projects, presentations, demos, and other professional development opportunities, undergraduate students will also enhance their professional skills.The first objective of this GraLNA project is to provide an experience of doing solid research for a diverse group of students, including underrepresented minorities in STEM, especially those from Primarily Undergraduate Institutions. Students will gain an increased proficiency in research skills as well as oral and written communication skills. The second objective is to advance the theoretical understanding of graph learning and optimization, and to also develop new approaches to handling diverse types of complexities in graph and network data. Notable types of complexities include the distributed nature of many realworld graph data, privacy concerns arising from sensitive relationships and interactions encoded in graphs and networks, and specialized network data that involves rich domain knowledge and regulatory constraints. Student participants will engage with research projects centered around distributed graph analysis, federated learning, optimization, private graph analysis, network security, and structural and functional brain network analysis. The third objective of this project is to provide for both student participants and faculty mentors professional training and growth through a series of professional development activities, and also provide junior faculty and Ph.D. students mentoring and co-advising experience respectively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为UNC Greensboro计算机科学系主持的本科生(REU)网站建立了新的研究经验。每年夏天,有十名学生将在Graph Machine学习和网络分析的基础上接受研究培训及其在现实生活网络中的具体应用。图形和网络在各种科学学科中变得无处不在,从物联网,在线社交网络,大脑网络和分子到蛋白质 - 蛋白质相互作用网络。大规模网络的分析可以为我们对复杂系统的理解带来重大进步。现有方法纯粹是经验或缺乏深入的基础探索,因此在处理复杂图和网络数据方面有限。该项目旨在为学生提供机会在主要研究和少数民族服务学院进行图形和网络的尖端研究。图形学习和网络分析的研究培训将有助于发展竞争性的下一代网络和AI劳动力。通过各种活动,例如导向研讨会,受邀的讲座,动手项目,演示,演示和其他专业发展机会,本科生也将增强他们的专业技能。这个Gralna项目的第一个目标是为包括在STEM中尤其是来自原始研究生的STEM不足的少数群体(包括较少的少数人)提供扎实研究的经验。学生将培养研究技能以及口头和书面沟通技巧的熟练程度。第二个目标是提高对图形学习和优化的理论理解,并开发出处理图和网络数据中各种复杂性的新方法。值得注意的复杂性类型包括许多Realworld图数据的分布式性质,隐私问题是由敏感的关系和图形和网络中编码的交互所引起的,以及涉及丰富的领域知识和调节约束的专业网络数据。学生参与者将参与围绕分布式图分析,联合学习,优化,私人图分析,网络安全以及结构和功能性脑网络分析的研究项目。该项目的第三个目标是通过一系列专业发展活动为学生参与者和教职员工指导专业培训和成长,并提供初级教师和博士学位。该奖项分别反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评论标准来评估的,这一奖项分别反映了NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Chunjiang Zhu其他文献
Communication Efficient Distributed Hypergraph Clustering
通信高效的分布式超图集群
- DOI:10.1145/3404835.346309210.1145/3404835.3463092
- 发表时间:20212021
- 期刊:
- 影响因子:0
- 作者:Chunjiang Zhu;Qinqing Liu;J. BiChunjiang Zhu;Qinqing Liu;J. Bi
- 通讯作者:J. BiJ. Bi
Discussion on the Elements of Modern Agriculture Sustainable Development
现代农业可持续发展要素探讨
- DOI:10.2991/iceesd-18.2018.29410.2991/iceesd-18.2018.294
- 发表时间:20182018
- 期刊:
- 影响因子:0
- 作者:Chunjiang Zhu;Rujiu LuoChunjiang Zhu;Rujiu Luo
- 通讯作者:Rujiu LuoRujiu Luo
Hemoglobin H disease due to a de novo mutation at the α2-globin gene and an inherited common α-thalassemia deletion found in a Chinese boy.
一名中国男孩发现了由 α2 珠蛋白基因新生突变和遗传性常见 α 地中海贫血缺失引起的血红蛋白 H 病。
- DOI:
- 发表时间:20102010
- 期刊:
- 影响因子:0
- 作者:Chunjiang Zhu;Wenfang Yu;Jiansheng Xie;Ling Chen;Hui Ding;X. Shang;Xiangmin XuChunjiang Zhu;Wenfang Yu;Jiansheng Xie;Ling Chen;Hui Ding;X. Shang;Xiangmin Xu
- 通讯作者:Xiangmin XuXiangmin Xu
共 3 条
- 1
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
中国恐龙骨骼化石时空分布综合研究
- 批准号:42372030
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
- 批准号:82371902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
REU Site: Multidisciplinary Graph Data Analytics
REU 网站:多学科图数据分析
- 批准号:23494862349486
- 财政年份:2024
- 资助金额:$ 37.2万$ 37.2万
- 项目类别:Standard GrantStandard Grant
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
- 批准号:22439382243938
- 财政年份:2023
- 资助金额:$ 37.2万$ 37.2万
- 项目类别:Standard GrantStandard Grant
REU Site: Extremal Graph Theory and Dynamical Systems
REU 站点:极值图论和动力系统
- 批准号:19501891950189
- 财政年份:2020
- 资助金额:$ 37.2万$ 37.2万
- 项目类别:Standard GrantStandard Grant
REU Site: Extremal Graph Theory and Dynamical Systems
REU 站点:极值图论和动力系统
- 批准号:16590751659075
- 财政年份:2017
- 资助金额:$ 37.2万$ 37.2万
- 项目类别:Standard GrantStandard Grant
REU Site: Graph Theory, Combinatorics, and Abstract Algebra
REU 网站:图论、组合学和抽象代数
- 批准号:16592211659221
- 财政年份:2017
- 资助金额:$ 37.2万$ 37.2万
- 项目类别:Standard GrantStandard Grant