CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
基本信息
- 批准号:2349122
- 负责人:
- 金额:$ 17.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Transport networks are found everywhere in living systems, from the veins in the leaves of plants to the networks in our bodies: the respiratory system that handles the flow of air, the circulatory system that carries nutrients through blood circulation, and the networks of nerves and brain cells that transport electrical impulses. Because biological networks are necessary for transporting essential resources (blood, oxygen, water, and nutrients), they are critical for health and survival. Therefore, there is a clear need to explore the fundamental principles of these networks to better predict how they will behave under unexpected conditions in order to prevent potential failures. Exploring the underlying mechanisms of biological flow will not only advance the current state of knowledge of biological transport networks but can provide exceptional opportunities to solve complex problems in discrete calculus, graph theory, and optimization. This would, in turn, lead to improvements in engineering transport networks that are critical for maintaining human life in ways that will make them more durable and operate with greater efficiency, from networks that are large in scale, such as traffic systems, irrigation and water delivery systems, and power grids to networks that are small in scale such as fuel cells, solar cells, or artificial organs. The computational framework developed in this project will advance our knowledge of biological vascular networks, which can lead to optimized bioinspired solutions for many engineering transport networks such as water distribution and drainage networks to the treatment of cardiovascular diseases and more efficient drug delivery through the use of nanoparticles. Since the developed models for leaf venation networks in this project are critical to plant performance, the results can also enhance productivity of ecosystems and will have applications in agriculture. As such, this research project aligns with NSF’s mission to promote the progress of science and to advance national health, prosperity and welfare. This work incorporates multidisciplinary research collaborations that will make a significant contribution to education, outreach, and diversity by engaging undergraduate students, including underrepresented students, in research and incorporation of biology and engineering in outreach programs for K through 12 students.zOver billions of years of natural selection, nature has evolved complex topologies to solve a wide range of problems. A conspicuous class of such topologies are the ramified heterogeneous structures in numerous biological systems that transport resources, such as leaf venation networks, the root and axis system of plants, and the cardiovascular system of animals and humans. The evolution and function of such branched structures is not only critical for an organism’s survival and fitness but has also inspired scientists and engineers to improve the performance of many engineering flow networks such as fuel cells, solar cells and synthetic organs. The overall aim of this project is to 1) develop a robust and efficient computational framework to study transport phenomena in complex biological networks, 2) apply the framework to study the rules of nature that optimize mass and heat transfer in biological networks, and 3) assess the feasibility of bioinspired principles to design sustainable and resilient engineering networks. The proposed framework will enable the development of transformative models that not only advance our knowledge about underlying biophysical phenomena in highly heterogeneous biological networks but also provide new opportunities to apply bioinspired solutions for many engineering applications. The proposed research will result in a highly efficient and robust framework that enables (1) a fundamental understanding of the performance of complex biological transport networks and their biophysical characteristics and functions which are essential for survival, (2) an understanding of multiphysics coupled transport phenomena in highly heterogeneous biological networks, (3) an assessment of the resilience of networks to damage and varying fluxes and an understanding the underlying mechanisms and principles used by biological systems for optimization of cost and performance, and (4) assessment of the feasibility and scalability of the biological mechanisms as bioinspired solutions for practical engineering problems that range from micro to macro in scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
运输网络在生物系统中到处都发现了我们体内的植物的叶子:在处理空气的流动,通过血液循环的圆形系统以及传递电脉冲的神经和脑细胞网络和营养,它们对于健康和生存至关重要。网络但可以在离散的计算,图理论和优化中提供额外的人,从而导致工程运输网络的改善,这对于维持人类生活的方式至关重要规模较大的网络,例如交通系统,灌溉和输水系统,以及诸如燃料电池的网络,例如燃料电池Al器官。这可以导致优化的生物启发的解决方案将水分布和排水网络传输到treasc ular疾病,而纳米菌则具有更多的效率。科学并促进国家健康,繁荣和福利。解决广泛的问题的复杂拓扑。健身,但也启发了提高性能的工程流网络(例如燃料电池)的启发主义者和进来,是1)开发出强大而有效的计算属性,以研究复杂的生物网络中的运输现象,2)o研究自然规则,以优化质量和热量优化质量和热量生物网络中的热传递,3)评估生物启发的原则,以设计可持续的和弹性的网络。高效的框架,可以实现(1)网络以及对高度异质生物网络中生存RT现象至关重要的生物物理特性和功能用于实用工程问题的生物启动的成本和绩效机制的系统。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A (Simplified) Biogeochemical Numerical Model to Predict Saturation, Porosity and Permeability During Microbially Induced Desaturation and Precipitation
- DOI:10.1029/2022wr032907
- 发表时间:2023-01
- 期刊:
- 影响因子:5.4
- 作者:Liya Wang;L. V. van Paassen;V. Pham;Nariman Mahabadi;Jibo He;Yunqi Gao
- 通讯作者:Liya Wang;L. V. van Paassen;V. Pham;Nariman Mahabadi;Jibo He;Yunqi Gao
Pullout resistance of biomimetic root-inspired foundation systems
- DOI:10.1007/s11440-023-02118-6
- 发表时间:2023-11
- 期刊:
- 影响因子:5.7
- 作者:Thibaut Houette;Meron Dibia;Nariman Mahabadi;Hunter King
- 通讯作者:Thibaut Houette;Meron Dibia;Nariman Mahabadi;Hunter King
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nariman Mahabadi其他文献
Evolution of Porosity–Permeability Relationships in Bio-Mediated Processes for Ground Improvement: A Pore-Scale Computational Study
生物介导的地面改良过程中孔隙度-渗透率关系的演变:孔隙尺度计算研究
- DOI:
10.1061/9780784484036.064 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
S. Nassiri;Nariman Mahabadi - 通讯作者:
Nariman Mahabadi
Multiphase fluid flow through porous media: Conductivity and geomechanics
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nariman Mahabadi - 通讯作者:
Nariman Mahabadi
Nariman Mahabadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nariman Mahabadi', 18)}}的其他基金
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2105012 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
- 批准号:
2246911 - 财政年份:2022
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2105012 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
- 批准号:
1947559 - 财政年份:2020
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: OAC: Real-time Computational Modeling of Crop Phenological Progress towards Scalable Satellite Precision Farming
CRII:OAC:作物物候进展的实时计算建模,实现可扩展的卫星精准农业
- 批准号:
1849821 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant