NSF-GACR: Reactive Interfaces for Degrading Contaminants of Emerging Concern and Pathogenic Viruses in Constructed Wetlands

NSF-GACR:用于降解人工湿地中新出现的污染物和致病病毒的反应界面

基本信息

项目摘要

Constructed wetlands (CWs) have emerged as promising and cost-effective nature-based systems for the treatment of wastewater due to their low-cost, efficiency, and benefits to the environment. Current CWs have been primarily designed to remove suspended solids, bulk organics, and nutrients including nitrogen and phosphorus. However, they are not effective at removing and degrading contaminants of emerging concern (CECs) or potentially harmful viral pathogens (VPs). As CECs and VPs have become global threats to human and ecosystem health, their efficient and rapid removal would be critical if a CW system is to be installed in an urban, suburban, or a rural area to treat contaminated wastewater. The overarching goal of this NSF-Czech Science Foundation (GAC) project is to investigate the design, development, and evaluation of a new CW treatment system designed to remove CECs and VPs. To advance this goal, the Principal Investigator (PIs) propose to explore the design and integration of reactive interfaces into CWs, including solid-water interfaces generated by iron and manganese oxides and air-water interfaces generated by air bubbles, to promote the simultaneous removal and destruction of CECs and VPs. The successful completion of this project will benefit society through the generation of fundamental knowledge to advance the design and implementation of more efficient and cost-effective constructed wetland systems for wastewater treatment. The joint implementation of this project in the United States (US) and the Czech Republic will broaden the impact of the research with the potential to improve global water management. Additional benefits to society will be achieved through student education and training including the mentoring of one graduate student and one undergraduate student at the University of Tennessee Knoxville. Constructed wetlands (CWs) are promising pollution control and environmental remediation systems as they offer cost-effective, nature-based systems for wastewater treatment. However, existing CWs are primarily designed for the removal of nutrients but not for retention and degradation of compounds of emerging concern (CECs) or viral pathogens (VPs). The goals of this NSF-GAC collaborative project are to investigate, understand, and quantify how solid-water interfaces generated by functionalized metal oxides (e.g., iron and manganese oxides) and air-water interfaces created by air bubbles increase the microbial/chemical degradation of CECs and removal of VPs under aerobic-anaerobic conditions in constructed wetlands (CWs). The specific objectives of the research are to (1) synthesize and/or functionalize iron and manganese oxide particles to promote binding and degradation of CECs; (2) optimize reaction conditions for virus binding and removal at solid-water interfaces; (3) optimize environmental conditions to maximize the removal of CECs and viruses under varying flow conditions; and (4) validate the CEC degradation and virus inactivation mechanisms under pilot scale CW conditions. The US team will systematically assess the capacity of solid, water, and air interfaces to remove viruses from wastewater in model CW columns. The Czech team will focus on the chemical and biological reactions and mechanisms controlling the persistence of CECs in model soil columns, microcosms, and pilot-scale mesocosms designed to simulate CWs. The successful completion of this research will advance the fundamental understanding of the synergistic roles of air bubbles and metal oxides in removing CECs and VPs under varying environmental conditions in model laboratory and pilot CWs. To implement the education and training goals of the project, the Principal Investigators propose to leverage an existing NSF REU site award at the University of Tennessee Knoxville to recruit and engage undergraduate students from underrepresented and underserved groups in Appalachia to work on the project. In addition, the PIs plan to develop activities for local K-12 science teachers as well as training of undergraduate and graduate students in the US and the Czech Republic.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工湿地(CW)因其低成本、高效且对环境有利而成为一种有前途且具有成本效益的基于自然的废水处理系统。目前的化学武器主要设计用于去除悬浮固体、大量有机物以及包括氮和磷在内的营养物。然而,它们不能有效去除和降解新出现的污染物 (CEC) 或潜在有害的病毒病原体 (VP)。 由于 CEC 和 VP 已成为人类和生态系统健康的全球威胁,如果要在城市、郊区或农村地区安装 CW 系统来处理受污染的废水,那么高效、快速地去除它们至关重要。该 NSF-捷克科学基金会 (GAC) 项目的总体目标是研究旨在去除 CEC 和 VP 的新型 CW 处理系统的设计、开发和评估。为了推进这一目标,首席研究员(PI)建议探索反应界面的设计和集成到CW中,包括由铁和锰氧化物产生的固-水界面以及由气泡产生的空气-水界面,以促进同时去除CEC 和 VP 的破坏。该项目的成功完成将通过产生基础知识来推进更高效、更具成本效益的废水处理人工湿地系统的设计和实施,从而造福社会。该项目在美国和捷克共和国的联合实施将扩大该研究的影响,并有可能改善全球水资源管理。通过学生教育和培训,包括指导田纳西州诺克斯维尔大学的一名研究生和一名本科生,将给社会带来额外的好处。人工湿地 (CW) 是一种很有前途的污染控制和环境修复系统,因为它们为废水处理提供了经济高效、基于自然的系统。然而,现有的化学武器主要是为了去除营养物质而设计的,而不是为了保留和降解新兴关注的化合物 (CEC) 或病毒病原体 (VP)。该 NSF-GAC 合作项目的目标是调查、理解和量化功能化金属氧化物(例如铁和锰氧化物)产生的固水界面以及气泡产生的空气-水界面如何增加微生物/化学降解在人工湿地 (CW) 的需氧-厌氧条件下去除 CEC 和去除 VP。该研究的具体目标是(1)合成和/或功能化铁和锰氧化物颗粒以促进CEC的结合和降解; (2)优化固水界面病毒结合和去除的反应条件; (3)优化环境条件,在不同的流量条件下最大限度地去除CEC和病毒; (4) 在中试规模 CW 条件下验证 CEC 降解和病毒灭活机制。美国团队将系统地评估 CW 模型柱中固体、水和空气界面去除废水中病毒的能力。捷克团队将重点研究化学和生物反应以及控制 CEC 在模型土柱、微观世界和旨在模拟 CW 的中试规模中观世界中持久存在的机制。这项研究的成功完成将加深对模型实验室和试点化学武器中不同环境条件下气泡和金属氧化物在去除 CEC 和 VP 方面的协同作用的基本理解。为了实现该项目的教育和培训目标,首席研究员建议利用田纳西大学诺克斯维尔分校现有的 NSF REU 站点奖项来招募和吸引来自阿巴拉契亚地区代表性不足和服务不足群体的本科生参与该项目。此外,PI 还计划为当地 K-12 科学教师开展活动,并培训美国和捷克共和国的本科生和研究生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Radosevich其他文献

Surface-Adsorbed Contaminants Mediate the Importance of Chemotaxis and Haptotaxis for Bacterial Transport Through Soils
表面吸附污染物介导趋化性和趋触性对于细菌通过土壤运输的重要性
  • DOI:
    10.3389/fmicb.2019.02691
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Liqiong Yang;Xin Chen;Xiangfeng Zeng;Mark Radosevich;Steven Ripp;Jie Zhuang;Gary S. Sayler
  • 通讯作者:
    Gary S. Sayler
Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling
使用 13C 脉冲标记从植物到土壤的碳通量以及地膜覆盖和施肥下微生物固定的动态
  • DOI:
    10.1016/j.soilbio.2014.09.024
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Hui Li;Jie Zhuang;Mark Radosevich;Jingkuan Wang
  • 通讯作者:
    Jingkuan Wang
Bacterial mobility facilitated by soil depth and intact structure
土壤深度和完整结构促进细菌迁移
  • DOI:
    10.1016/j.still.2020.104911
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Jing Chen;Liqiong Yang;Xijuan Chen;Steven Ripp;Mark Radosevich;Jie Zhuang
  • 通讯作者:
    Jie Zhuang
Anaerobic lipopeptide biosurfactant production by an engineered bacterial strain forin situmicrobial enhanced oil recovery
  • DOI:
    10.1039/c7ra02453c
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xiaolong Liang;Rongjiu Shi;Mark Radosevich;Feng Zhao;Yingyue Zhang;Siqin Han;Ying Zhang
  • 通讯作者:
    Ying Zhang
Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer
绝对和特定土壤酶活性对长期添加有机和矿物肥料的响应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Radosevich;Lili Xu;Xiyu Liu;Xiaomin Sun
  • 通讯作者:
    Xiaomin Sun

Mark Radosevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSF-GACR: An Optical Biosensing Platform for Simultaneous Detection and Quantification of Exosomes and Exosomal Cargo Biomarkers
NSF-GACR:用于同时检测和定量外泌体和外泌体货物生物标志物的光学生物传感平台
  • 批准号:
    2247222
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
NSF-GACR: Atoms to nanoparticles to atoms - predicting evolving catalyst activity under inherently transient conditions
NSF-GACR:原子到纳米粒子到原子 - 预测固有瞬态条件下不断变化的催化剂活性
  • 批准号:
    2227016
  • 财政年份:
    2023
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
NSF-GACR: Strong Field QED Plasma Physics at PetaWatt-Class Laser Facilities
NSF-GACR:拍瓦级激光设施的强场 QED 等离子体物理
  • 批准号:
    2206059
  • 财政年份:
    2022
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Continuing Grant
NSF-GACR: Study of Gamma-Ray Generation in High-Intensity Laser-Plasma Interactions at ELI Beamlines
NSF-GACR:ELI 光束线高强度激光-等离子体相互作用中伽马射线产生的研究
  • 批准号:
    2206777
  • 财政年份:
    2022
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Standard Grant
NSF-GACR: Strong Field QED Plasma Physics at PetaWatt-Class Laser Facilities
NSF-GACR:拍瓦级激光设施的强场 QED 等离子体物理
  • 批准号:
    2206059
  • 财政年份:
    2022
  • 资助金额:
    $ 39.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了