CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion

职业:蝾螈运动的进化生物力学和功能形态

基本信息

  • 批准号:
    2340080
  • 负责人:
  • 金额:
    $ 106.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

How tetrapods, four footed animals, became terrestrial was a pivotal event in vertebrate evolution that set the stage for the diversification of tetrapods thereafter. The locomotor capabilities of early tetrapods are often modeled with extant salamanders since the latter have a generalized tetrapod body plan. Yet, salamanders exhibit tremendous morphological diversity across environments, providing a framework to assess the mechanical requirements for terrestrial locomotion by comparing morphological change across carefully matched evolutionary lineages. The greater effects of gravity may impose biomechanical constraints that preclude certain salamanders from moving on land, but the habitat that salamanders occupy differs between developmental strategies. Metamorphosis involves the development of an animal across two or more distinct life stages but can be biphasic (aquatic larvae to terrestrial adults) or multi-phasic (aquatic larvae to terrestrial juveniles to aquatic adults) whereas direct development remains in one environment. Thus, biomechanical constraints may be stronger in terrestrial direct developers than biphasic metamorphers since the former do not experience an aquatic stage. This project will integrate physiology, engineering, and evolutionary biology to examine how the interplay between habitat preference and developmental strategy affects the relationship between the structure and function of tissues (e.g., bones) and whole-organism performance (e.g., locomotion). Students will receive research training through a new Course-Based Undergraduate Research Experience on Organismal Form and Function and Professional Research Experience for Post-baccalaureates in Biology program to broaden the participation of learners from historically excluded communities. In addition, “Salamander Safaris” will be hosted during Amphibian Week to promote the participation of girls in STEM. Locomotion places some of the highest physical demands (‘loads’) on bones and failure to withstand loads could cause fractures or even death in an animal, yet how bones evolved to support the loads imposed by aquatic vs. terrestrial environments is not well understood. Phylogenetic comparisons of whole-bone mechanics across ecologically diverse species will advance knowledge of how habitat and developmental strategy has shaped the evolutionary morphology of salamander limb bones. Investigators will quantify in vivo bone loading during terrestrial walking through synchronized 3D kinematics and kinetics. Investigators will then apply these loading data to collect the first dynamic measures of limb bone strength by integrating mechanical property testing and 3D digital image correlation. Finally, they will combine these techniques to examine how bone mechanics is affected by water-land and land-water transitions within a lifetime by comparing juveniles and adults from species with different developmental strategies (i.e., direct, biphasic, multiphasic). Bone strength is predicted to be highest in terrestrial direct developers lowest in paedomorphic aquatic salamanders, and intermediate in biphasic metamorphic salamanders. Stronger bones likely assist terrestrial species to withstand internal (muscle) and external (ground reaction forces) loads and then transfer this energy into propulsion. Compared to the femur, the humerus is expected to evolve at faster rates based on the multi-functional role of forelimbs (e.g., digging, reproduction, locomotion) that is likely less constrained compared to hindlimbs whose primary role is for generating propulsion. Findings from this work will contribute new insights into the mechanical requirements of becoming terrestrial.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
四足动物如何成为陆生动物是脊椎动物进化中的一个关键事件,为后来的四足动物的多样化奠定了基础。早期四足动物的运动能力通常以现存的蝾螈为模型,因为后者具有普遍的四足动物身体结构。 ,蝾螈在不同环境中表现出巨大的形态多样性,通过比较仔细进化匹配的形态变化,提供了一个评估陆地运动机械要求的框架重力的更大影响可能会施加生物力学限制,阻止某些蝾螈在陆地上移动,但蝾螈所占据的栖息地因发育策略而异,变态涉及动物跨越两个或多个不同生命阶段的发育,但可以是双相的。水生幼虫到陆生成虫)或多阶段(水生幼虫到陆生幼虫再到水生成虫),而直接发育仍处于一个阶段因此,陆地直接发育者的生物力学约束可能比双相变质者更强,因为前者不经历水生阶段,该项目将整合生理学、工程学和进化生物学来研究栖息地偏好和发育策略之间的相互作用。组织(例如骨骼)的结构和功能与整个有机体性能(例如运动)之间的关系将通过新的基于课程的本科生研究经验接受研究培训。生物学学士学位后的有机体形式和功能以及专业研究经验计划,以扩大来自历史上被排斥社区的学习者的参与。此外,两栖周期间还将举办“蝾螈之旅”,以促进女孩在运动领域的参与。对骨骼的一些最高物理要求(“负载”)和无法承受负载可能会导致动物骨折甚至死亡,但骨骼如何进化以支撑水生环境与陆地环境所施加的负载对不同生态物种的全骨力学进行系统发育比较将有助于了解栖息地和发育策略如何塑造蝾螈肢体骨骼的进化形态,研究人员将通过同步 3D 运动学来量化陆地行走期间的体内骨负荷。然后,研究人员将应用这些加载数据,通过整合机械性能测试和 3D 数字图像相关性来收集肢体骨骼强度的第一个动态测量结果,最后,他们将结合这些技术来检查骨骼力学如何受到影响。通过比较具有不同发育策略(即直接、双相、多相)的物种的幼体和成体,通过一生中的水-陆和陆-水转变,预测陆地直接发育者的骨强度最高,而幼态水生蝾螈的骨强度最低,更强壮的骨骼可能有助于陆地物种承受内部(肌肉)和外部(地面反作用力)负荷和然后将这种能量转化为推进力,与股骨相比,基于前肢的多功能作用(例如挖掘、繁殖、运动),肱骨预计会以更快的速度进化,与主要作用的后肢相比,前肢可能受到的限制更少。这项工作的发现将为地球的机械要求提供新的见解。该奖项反映了 NSF 的法定使命,并通过使用该项目的评估被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandy Kawano其他文献

Sandy Kawano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于生物进化论消噪算法的齿轮传动系统故障特征多尺度提取研究
  • 批准号:
    51905053
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Lingo-1疫苗促进脊髓轴突再生的进化论依据和实验研究
  • 批准号:
    30872604
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
二叠-三叠纪之交牙形石形态演化规律及其与环境的协同演化研究
  • 批准号:
    40502004
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
  • 批准号:
    70471078
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目
分布式计算环境下基于进化论的认识模型及其应用研究
  • 批准号:
    70171061
  • 批准年份:
    2001
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019323
  • 财政年份:
    2020
  • 资助金额:
    $ 106.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019314
  • 财政年份:
    2020
  • 资助金额:
    $ 106.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019355
  • 财政年份:
    2020
  • 资助金额:
    $ 106.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019371
  • 财政年份:
    2020
  • 资助金额:
    $ 106.7万
  • 项目类别:
    Standard Grant
Evolutionary biomechanics of vertebrate musculoskeletal systems
脊椎动物肌肉骨骼系统的进化生物力学
  • 批准号:
    RGPIN-2014-04324
  • 财政年份:
    2019
  • 资助金额:
    $ 106.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了